New organ transplant strategy aims to better prevent rejection

March 10, 2014

Organ-transplant recipients often reject donated organs, but a new, two-pronged strategy developed by UC San Francisco researchers to specifically weaken immune responses that target transplanted tissue has shown promise in controlled experiments on mice.

The hope is that using this novel treatment strategy at the time of transplantation surgery could spare patients from lifelong immunosuppressive treatments and their side effects. The approach might also be used to treat autoimmune diseases such as type 1 diabetes, the researchers said. The study is published and commented upon in a recent issue of American Journal of Transplantation.

The study was conducted in mouse studies of islet-cell transplantation -- a procedure used to restore insulin secretion and control over glucose levels in the blood in patients with life-threatening diabetes. The treatment allowed more than 70 percent of mice to accept transplants without requiring any long-term treatment with immunosuppressive drugs.

The approach, led by Diabetes Center member Qizhi Tang, PhD, involved using cells from donors to activate immune cells called donor-reactive effector T cells. The researchers then gave the mice a drug called cyclophosphamide, known to specifically kill activated cells.

Up to 80 percent of the donor-reactive effector T cells, which play a major role in transplant rejection, were eliminated by this treatment. However, that procedure alone did not prolong survival of transplanted tissue.

That required a second step: Some of the mice also received cell therapy -- an expanded population of cells called TREGs that quell immune activity. Seventy percent to 80 percent of these mice accepted the transplants, without requiring any long-term immunosuppressive drugs.

Significantly, when the cell therapy was used only in those cells that specifically target donor tissue, only one-fifth as many cells were needed to prevent transplant rejection, the UCSF researchers found. The bigger bang per cell may bode well for clinical protocols, Tang suggested.

An inkling that such a two-pronged approach might work in humans came from the unanticipated outcome of an islet-transplantation clinical trial at UCSF Medical Center, in which a new drug regimen killed effector T cells, allowing another type of immune cell, the TREGs, to quiet the rejection response. One patient in that study now has functioning islets and has been free from immunosuppressive therapy for more than one year.

Controlled clinical trials to evaluate a similar approach for liver and kidney transplantation are in the planning stage, according to Tang, an associate professor of surgery and the head of the Transplantation Research Laboratory at UCSF. "The clinical trial design incorporates what we found in the mouse islet transplant model," she said.

Depleting T Effector Cells, Boosting TREG Cells

Both immune-cell populations that Tang and colleagues manipulated in the mouse studies are T cells, a branch of the immune system's armed forces.

Production of effector T cells normally is ramped up in response to foreign invaders such as infectious disease microbes. However, their numbers also increase to battle foreign, transplanted cells, and they are abnormally activated in autoimmune diseases such as type 1 diabetes, in which effector T cells attack insulin-secreting beta cells of the pancreas.

Another type of T cell used in Tang's studies, the regulatory T cell, or TREG, normally helps calm the immune system after microbial foes have been vanquished, and may help prevent excessive collateral damage to tissues that might otherwise result from immune responses.

In recent years, transplant teams have begun testing immunosuppressive drugs near the time of surgery that preferentially knock down T effector cell populations -- hoping to lower the chances of transplant rejection -- with the expectation that patients would still require some kind of lifelong immunosuppressive therapy.

In the recent human islet transplantation study, UCSF researchers discovered that the Genentech drug Efalizumab not only did an excellent job of suppressing T effector cells, but also dramatically increased TREG populations. This effect ultimately allowed one patient to go off immunosuppressive therapy completely, Tang said, and raised hopes that the two-pronged approach could be developed to prevent transplant rejection.

To boost TREGs, Tang and TREG research pioneer Jeffrey Bluestone, PhD, the A.W. and Mary Margaret Clausen Distinguished Professor of Metabolism and Endocrinology at UCSF, have for years been developing methods to collect TREGs from the body, to then expand their numbers in the lab, and finally to return them to the transplant patient.

A UCSF phase 1 clinical trial to evaluate TREGS for the treatment of type 1 diabetes has recently concluded patient recruitment. The team is actively planning a follow-up phase II trial to begin recruitment early in 2014, Tang said.

Clinical Trials in Organ Transplantation Expected Next Year

In another UCSF study published online in September in American Journal of Transplantation, Tang, Bluestone and colleagues described a way to preferentially grow human TREGs in a clinical laboratory that are specifically targeted to protect donor tissue.

The U.S. Food and Drug Administration has approved the use of the donor-targeted TREGs in liver transplant patients in clinical trials, Tang said.

"We decided to go with liver transplantation first, because the therapy is new, and liver grafts are more resilient," she said. "We are also actively seeking approval for the use of this product in kidney transplant patients. We anticipate that these trials will start later this year."
Co-authors of Tang's latest American Journal of Transplantation study include postdoctoral fellow Karim Lee, PhD, and research specialist Vinh Nguyen; Kyung-Mi Lee, an immunologist at Korea University, Seoul, and Sang-Mo Kang, MD, a transplant surgeon and an immunologist at UCSF.

The most recent study was funded by a donation from the Joyce and Fred Nicholas Family, the Korea Foundation for International Cooperation of Science and Technology (KICOS), and by the National Institutes of Health.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy, a graduate division with nationally renowned programs in basic biomedical, translational and population sciences, as well as a preeminent biomedical research enterprise and two top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children's Hospital.

University of California - San Francisco

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to