Nav: Home

Microbial soil cleanup at Fukushima

March 10, 2015

Proteins from salt-loving, halophilic, microbes could be the key to cleaning up leaked radioactive strontium and caesium ions from the Fukushima Dai-ichi Nuclear Power Plant incident in Japan. The publication of the X-ray structure of a beta-lactamase enzyme from one such microbe, the halophile Chromohalobacter sp. 560, reveals it to have highly selective cesium binding sites.

A collaboration between researchers at the Japan Atomic Energy Agency in Tokai, Ibaraki, Kyushu Synchrotron Light Research Center in Saga, Kagoshima University, and Florida State University, Tallahassee, USA, has led to a 1.8 to 2.9 angstrom resolution structure for this enzyme. Anomalous X-ray diffraction also revealed binding sites in the protein for Sr2+ and Cs+ ions, the team reports [Arai et al. (2015).Acta Cryst. D71, 541-554; DOI: 10.1107/S1399004714027734].

The team demonstrated how they could locate caesium ions in a specific site within the protein even in the presence of a nine-fold molar excess of sodium ions, which would normally out-compete any binding site. Intriguingly, the presence of strontium and caesium ions does not diminish the activity of the enzyme determined using isothermal titration calorimetry. "The observation of a selective and high-affinity caesium-binding site provides important information that is useful for the design of artificial caesium-binding sites that may be useful in the bioremediation of radioactive isotopes," the team explains.

It is well known that proteins from halophilic bacteria have an abundance of acidic amino acids and so present an acidic surface that can interact with a range of metal ions. There are twelve types of such enzymes recorded in the Protein Data Bank that can bind to sodium, magnesium, potassium, calcium, iron, zinc, strontium and cadmium ions. Indeed, the presence of these materials in various enzymes is usually a prerequisite for their structure and functionality. Because of this metal affinity, the team reasoned that proteins from halophiles might be useful as molecular mops for separating precious metals from mixtures or in remediation when toxic metals ions must be extracted selectively from a site. More specifically, the proteins could act as models for artificial reagents to be used in this context.

With respect to the Fukushima incident, the team explains that most of the radioactive caesium was deposited on the land at the site. Amounting to 2.4 petabequerels (PBq) of radioactivity and it is fixed in soil particles, comprising weathered biotite, a micaceous mineral found in many igneous and metamorphic rocks. Much of the soil has been removed, but the issue of extracting the radioactive elements for safe disposal has not been addressed. Moreover, the soil that remains at the site is also contaminated and no cost-effective method for extracting the caesium that leeches from it into the environment has been demonstrated.

The team suggests that protein absorbents related to the beta-lactamase from Chromohalobacter might be designed using the techniques of synthetic biology, the most likely approach being to engineer a native protein to make the affinity site described by the team. The genes for such an agent might then be engineered into new breeds of plant that could be grown on the site. With the protein absorbents expressed in plant roots, caesium could be extracted from the soil efficiently, the plants harvested and their new radioactive cargo disposed of safely, leaving behind improved soil.

"Although the removal of caesium is an important theme for us, public acceptance for the use of genetically engineered plants is not strong enough here in Japan, so we are going to shift our theme for finding useful sites to gather other rare materials using engineered proteins derived from the structural information of the halophilic proteins," team member Ryota Kuroki revealed to us.
-end-


International Union of Crystallography

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
More Proteins News and Proteins Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...