Nav: Home

Rare split images of supernova put Johns Hopkins astronomer in the spotlight

March 10, 2015

A Johns Hopkins astronomer played a key role in the recent discovery of a distant exploding star whose light split into four distinct images in a display seen for the first time by scientists using the Hubble Space Telescope.

The multi-image effect occurred when light from the exploding star passed through a cluster of galaxies located between the supernova and the Earth. The gravitational pull from one of the galaxies within the cluster is acting as a "cosmic lens," bending and magnifying the light, creating four separate images.

Famed physicist Albert Einstein first predicted this effect, but it had never been observed before in the light of a supernova until late last year. The discovery was reported March 5 by a group of 31 researchers writing in a special issue of the journal Science that paid tribute to Einstein's Theory of General Relativity.

Steven A. Rodney, a Hubble Postdoctoral Research Fellow in the Department of Physics and Astronomy at Johns Hopkins, was listed as second author on the Science paper. Rodney, who is supervised by a Johns Hopkins Nobel Laureate, physics and astronomy professor Adam Reiss, is leading a research group called FrontierSN. (The SN is short for supernova.) This team, assembled two years ago, is using the Hubble Space Telescope to search for stellar explosions, like this one, lying behind massive galaxy clusters.

The recent "multiply-imaged" supernova, named "Supernova Refsdal" for Norwegian astrophysicist Sjur Refsdal, is one of about 50 supernovae that the FrontierSN team members have found. Referring to this recent discovery, Rodney said, "This is by far the most spectacular object we've found so far."

Rodney likened the four different supernova images detected by Hubble to four different trains, leaving a station simultaneously and traveling at the same speed, but moving along different tracks. The massive cluster of galaxies between Earth and the supernova causes a gravitational warping of spacetime, which is akin to different landscapes that these trains must pass through. Each takes a different route, some more direct than others, so the trains do not all pull into the final destination at the same time. For Supernova Refsdal, each of the four different images must have first appeared at slightly different times. Rodney's team was not lucky enough to catch those initial flashes, but the researchers are currently using the Hubble Space Telescope to monitor the supernova, waiting for the four images to fade away.

"It's as though we just walked up to the train station and saw these four trains passing through," Rodney explained. "We didn't get there in time to catch the arrival of the engines in front, but we're watching now to see when each caboose goes by."

By measuring how much time elapses between the fading of each image and analyzing the paths these light beams pursue, Rodney and his collaborators hope to learn more about the distribution of the mysterious dark matter that dominates the mass of the lensing galaxy cluster. Gravitational lenses like this cluster are one of the primary tools that astronomers use for studying dark matter, which makes up large portions of the universe but cannot be seen. The research may also yield clues concerning the expansion rate of the universe.

The four time-delayed images of this supernova would have already made Supernova Refsdal an unprecedented discovery. But in this case the universe has more in store because the supernova is expected to make a return appearance within the next five years.

"My team," Rodney said, "will continue to monitor this galaxy cluster with Hubble, watching for the appearance of that fifth and final image. We're hoping this time we can catch it early, as it first arrives, to get an even better measurement of this unique explosion."
-end-
For images relates to this discovery, go to: http://hubblesite.org/newscenter/archive/releases/2015/08/image/

Digital photo of Steven Rodney available, contact Phil Sneiderman.

The Science journal article is at http://www.sciencemag.org/content/347/6226/1123.full/

Related links:

Johns Hopkins Department of Physics and Astronomy: http://physics-astronomy.jhu.edu/

Steven Rodney's website: http://www.pha.jhu.edu/~srodney/

MEDIA CONTACT: Phil Sneiderman
Office: 443-997-9907
Cell: 410-299-7462
prs@jhu.edu / On Twitter: @filroy

Johns Hopkins University

Related Supernova Articles:

Scientists discover supernova that outshines all others
A supernova at least twice as bright and energetic, and likely much more massive than any yet recorded has been identified by an international team of astronomers, led by the University of Birmingham.
Supernova observation first of its kind using NASA satellite
Their research, detailed in the Monthly Notices of the Royal Astronomical Society, represents the first published findings about a supernova observed using TESS, and add new insights to long-held theories about the elements left behind after a white dwarf star explodes into a supernova.
Astronomers find possible elusive star behind supernova
Astronomers may have finally found a doomed star that seemed to have avoided detection before its explosive death.
Stellar thief is the surviving companion to a supernova
Hubble found the most compelling evidence that some supernovas originate in double-star systems.
Supernova may have 'burped' before exploding
Only by increasing the rate at which telescopes monitor the sky has it been possible to catch more Fast-Evolving Luminous Transients (FELTs) and begin to understand them.
An unusual white dwarf may be a supernova leftover
Astronomers have identified a white dwarf star in our galaxy that may be the leftover remains of a recently discovered type of supernova.
Researchers show how to make your own supernova
Researchers from the University of Oxford are using the largest, most intense lasers on the planet, to for the first time, show the general public how to recreate the effects of supernovae, in a laboratory.
The big star that couldn't become a supernova
For the first time in history, astronomers have been able to watch as a dying star was reborn as a black hole.
Seeing quadruple: Four images of the same supernova, a rare find
Galaxies bend light through an effect called gravitational lensing that helps astronomers peer deeper into the cosmos.
Explosive material: The making of a supernova
Pre-supernova stars may show signs of instability for months before the big explosion
More Supernova News and Supernova Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.