Invertebrate palaeontology: The oldest crab larva yet found

March 10, 2015

A study of a recently discovered fossil published by LMU zoologists reveals the specimen to be the oldest known crab larva: The fossil is 150 million years old, but looks astonishingly modern.

To catch living crab larvae, all you have to do is trawl a plankton-net in the nearest bay or tidal pool. Finding fossilized crab larvae is rather more difficult - as witnessed by the fact that the specimen described in Nature Communications today by Ludwig-Maximilians-Universitaet (LMU) in Munich zoologists Joachim and Carolin Haug, and Joel Martin of the Natural History Museum of Los Angeles, is only the second such finding ever uncovered. Furthermore, the new find is no less than 150 million years old and is far better preserved than the first one. The specimen was actually discovered by a private collector in the famous limestone beds of Solnhofen in the Franconian Jura. "Much to our surprise, its morphology looks quite modern. Indeed, in terms of its external anatomy, it is barely distinguishable from many of its present-day counterparts," says Joachim Haug.

True crabs (Brachyura) have a complex life-cycle, which includes two larval phases that are morphologically highly specialized and quite distinct from each other. The first of these is the planktonic zoea phase, which goes through several molts before metamorphosing into the so-called megalopa. The megalopa subsequently gives rise to the immature bottom-dwelling crab. "Each developmental stage occupies a different ecological niche, and this is probably one of the reasons why crabs as a group have been so successful and become so diverse. Our specimen is the first fossilized megalopa yet found anywhere in the world and, as such, it provides unique insights into the evolution of brachyurans," Haug explains.

Independent evolution of larvae and adults

The oldest brachyuran fossils date back to the Middle Jurassic, about 180 million years ago. However, the narrow range of variability found among the early forms indicates a low level of functional and ecological differentiation. The first signs of rapid diversification appear during the Cretaceous, beginning approximately 100 million years ago, when the group underwent an adaptive radiation, diversifying into many specialized forms. A second significant burst of speciation set in some 50 million years ago, and the group has continued to differentiate both morphologically and ecologically ever since. "The early forms of adult brachyurans show little sign of specialization and look very archaic," says Haug. "But the new fossil larva would fit very well into one of the modern groups of crabs. Its tail-fan, legs, eyes and shield closely resemble those seen in many modern species." This suggests that, in the Late Jurassic, the megalopal lifestyle was very similar to that seen in many extant crab species. Like them, it was apparently a predator and a scavenger, and exploited the same ecological niche as modern megalopae. Its strikingly modern morphology thus reflects a very early specialization of larval stages within the crab lineage.

Based on the discrepancy between the conservative and still quite primeval morphology of the adult forms and the remarkably modern appearance of the new larval specimen, the researchers conclude that the evolution of larval stages and adults in the brachyuran lineage proceeded along quite different trajectories. While the larvae apparently diverged into highly specialized forms very early on, the morphology of the adults has remained very similar to that seen in the earliest known fossil representatives of the group. - In this case, the juveniles stole a march on their parents.

Ludwig-Maximilians-Universität München

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to