Nav: Home

Getting to the origins of photosynthesis

March 10, 2015

One of the most important areas in all of biology is the evolution of photosynthesis. Some species of single celled cyanobacteria, through photosynthesis, forever changed the atmosphere of the early Earth by filling it with oxygen, allowing a huge expansion in terms of what life was possible on the planet.

Cardona et al., in the advanced online edition of Molecular Biology and Evolution, examined the evolution origins of the D1 protein in cyanobacteria, which forms the heart of Photosystem II, the oxygen-evolving machine of photosynthesis. Photosystem II's role is to procure electrons for photosynthesis and it does this by ripping them out of water releasing oxygen as a byproduct. The research team selected all known D1 sequences from cyanobacteria and also representatives from algae and plants to compare the protein sequence variation.

They showed that D1 exists in at least 5 major forms, some of which could have originated before the evolution of water oxidation. This allowed the team to make a detailed evolutionary tree and to propose a sequence of events for the origin of water splitting in Photosystem II at an unprecedented level of detail. The earliest diverging form of D1 has maintained ancestral characteristics and was found in the recently sequenced genome of Gloeobacter kilaueensis JS-1 (found in a lava cave in Hawaii), probably one of the most primitive type of cyanobacteria known

A remarkable evolutionary innovation occurred around 3.2-2.7 billion years ago in a bacterial ancestor of cyanobacteria, made possible by key transitionary forms of D1. Their evidence suggests that water splitting could have evolved relatively fast after just a few changes to the ancestral D1 protein of Photosystem II. This ancestor contained several forms of D1 and may have been a lot more complex than previously thought, already highly specialized for the solar-powered oxidation of water.

"I think the most significant implication of the paper is that now the evolution of biological water oxidation can be addressed experimentally," said Cardona. "It is quite possible that in extant cyanobacteria today Photosystem II, using these ancestral forms of D1, could display traits and perform chemistry that resemble those of transitional forms before the evolution of efficient water splitting as we understand it today. The study of this alternative photosystems will not only give insights into the evolution of the process but could also provide clues on the environmental conditions where oxygenic photosynthesis first arose billions of years ago in the early Earth."
-end-


Molecular Biology and Evolution (Oxford University Press)

Related Evolution Articles:

An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
Guppies teach us why evolution happens
New study on guppies shows that animals evolve in response the the environment they create in the absence of predators, rather than in response to the risk of being eaten.
Undercover evolution
Our individuality is encrypted in our DNA, but it is deeper than expected.
Evolution designed by parasites
In 'Invisible Designers: Brain Evolution Through the Lens of Parasite Manipulation,' published in the September 2019 issue of The Quarterly Review of Biology, Marco Del Giudice explores an overlooked aspect of the relationship between parasites and their hosts by systematically discussing the ways in which parasitic behavior manipulation may encourage the evolution of mechanisms in the host's nervous and endocrine systems.
Tracing the evolution of vision
The function of the visual photopigment rhodopsin and its action in the retina to facilitate vision is well understood.
Directed evolution comes to plants
Accelerating plant evolution with CRISPR paves the way for breeders to engineer new crop varieties.
Pain free, thanks to evolution
African mole-rats are insensitive to many different kinds of pain.
Evolution in the gut
Evolution and dietary habits interact and determine the composition of bacteria in the digestive tract.
More Evolution News and Evolution Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.