Nav: Home

New study presents ion concentrate electrolyte using solvent containing fluorine atoms

March 10, 2020

With the spread of electric vehicles, interest in "high capacity batteries" is high. Lithium metal batteries, which use lithium metal on their anodes, are also drawing attention in this context. However, the problem is that the stability of the lithium metal is too large and the stability is low. The technology that solved this by the "electrolyte" in battery came out.

A joint research team, led by Professor Nam-Soon Choi and Professor Sang Kyu Kwak in the School of Energy and Chemical Engineering at UNIST has developed an ion concentrate electrolyte using a solvent containing fluorine atoms. The electrolyte evenly formed a protective film on the negative electrode and the positive electrode of the lithium metal battery, increasing the lifespan and output of the entire battery.

The charging and discharging of a lithium metal battery or a lithium ion battery occurs when a lithium ion moves between a positive electrode and a negative electrode. At this time, the passage through which lithium ions pass is the 'electrolyte', and the electrolyte itself reacts on the surface of the electrode (cathode / anode) to form a protective film. However, when this protective film is formed nonuniformly, a problem arises. Lithium metal sharply rises on the negative electrode, causing a short circuit, or modifying the positive electrode to reduce battery performance. Therefore, it is important to make an ideal type of protective film, and the electrolyte components must be effectively controlled for this purpose.

Professor Nam's research team developed a new composition containing fluorine (F) to protect both the negative and positive electrodes at the same time and increase the battery output. Fluorine reacted with lithium to form a protective film on the surface of the lithium electrode, and also repaired when the protective film was partially destroyed.

"The fluorine-containing electrolyte formed a protective film on the anode, and the electrolyte was decomposed at a high voltage of 4V or more and the adhesion to the anode was solved," says Yongwon Lee (Department of Energy Engineering at UNIST), a senior researcher at the R&D center of LG Chemical Co., Ltd. "This allows the implementation of high-voltage, long-life lithium metal batteries that was not available in the electrolytes of conventional lithium-ion batteries."

Professor Kwak's team used theoretical calculations to identify reaction trends and reaction mechanisms for fluorine-containing solvents. In particular, the fluorinated ether solvent, which has a reduction reaction more easily than conventional fluorine, has a property of easily emitting fluorine, thereby promoting the formation of a protective film (fluorinated interface) on the cathode. Kwak said, "This calculation principle will contribute to the development of functional electrolyte materials and additives for the high performance of lithium metal batteries."

"The electrode interfacial stabilization mechanism will be used to design the electrolyte system for high energy density cell development," says Professor Kwak. "It is expected to be of great help in improving the electrochemical performance of next generation high energy density batteries, including lithium ion batteries using the same positive electrode as lithium metal batteries."
-end-
The findings of this research have been published in the January 2020 issue of Nano Energy. This research has been supported through the Technology Innovation Program by the Ministry of Trade, Industry and Energy (MOTIE) and the Technology Development Program to Solve Climate Changes by the Ministry of Science and ICT (MSIT).

Ulsan National Institute of Science and Technology(UNIST)

Related Lithium Articles:

Powering the future with revolutionary lithium extraction technique
An international research team, led by Australia's Monash University, has pioneered and patented a new filtration technique that could one day slash lithium extraction times and change the way the future is powered.
New lithium batteries from used cell phones
Research from the University of Cordoba (Spain) and San Luis University (Argentina) was able to reuse graphite from cell phones to manufacture environmentally friendly batteries.
Using neutrons and X-rays to analyze the aging of lithium batteries
An international team has used neutron and X-ray tomography to investigate the dynamic processes that lead to capacity degradation at the electrodes in lithium batteries.
Can lithium halt progression of Alzheimer's disease?
In a new study, a team of researchers at McGill University has shown that, when given in a formulation that facilitates passage to the brain, lithium in doses up to 400 times lower than what is currently being prescribed for mood disorders is capable of both halting signs of advanced Alzheimer's pathology and of recovering lost cognitive abilities.
MTU engineers examine lithium battery defects
Lithium dendrites cause poor performance and even explosions in batteries with flammable liquid electrolytes.
New technology for pre-replenishing lithium for lithium ion supercapacitors
Li3N containing electrode is prepared by a commercially adoptable route, using DMF to homogenate the electrode slurry.
Towards new lithium-ion batteries that are safer and more efficient
Researchers have studied 2 types of cathodes that are very similar in their composition, but which show completely different behavior: one of them suffers from the known loss of energy density in the first charge cycle, while the other does not.
Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.
An air-stable and waterproof lithium metal anode
The instability of lithium metal anode in air and the dendrite growth limit its applications.
Expanding the temperature range of lithium-ion batteries
Electric cars struggle with extreme temperatures, mainly because of impacts on the electrolyte solutions in their lithium-ion batteries.
More Lithium News and Lithium Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.