Nav: Home

Immune cells against Alzheimer's?

March 10, 2020

Scientists at the German Center for Neurodegenerative Diseases (DZNE), the Ludwig-Maximilians-Universitaet (LMU) Munich and Denali Therapeutics (South San Francisco, CA, USA) have developed an approach to stimulate immune cells of the brain in such a way that they might possibly provide better protection against Alzheimer's disease. Their report has been published in the journal "EMBO Molecular Medicine". These findings could ultimately enable development of novel therapies to treat Alzheimer's disease.

The researchers identified a specific antibody that binds to the brain's immune cells, termed "microglia". This stimulates their activity in such a way that they live longer, divide more quickly and detect aberrant substances more easily. In mice with disease symptoms resembling those of Alzheimer's, studies revealed that deposits of proteins (called "plaques") were recognized and degraded more quickly. The notorious plaques are among the hallmarks of Alzheimer's disease, and are suspected to cause neuronal damage.

"We found that the plaques were not removed in their entirety, but rather this happened to their periphery. It is assumed that it is precisely this border area that repeatedly releases proteins which cause damage to neurons. So we may have found a way to specifically remove particularly harmful forms of amyloid, which is the protein contained in the plaques," said Prof. Christian Haass, speaker of the DZNE's Munich site and a department head of the LMU's Biomedical Center Munich.

Immune cells of the brain

Haass and colleagues have been focusing on the immune cells of the brain for quite some time. Their research focuses on TREM2, a so-called receptor on the cell surface to which other molecules can attach. TREM2 can occur in different versions from person to person - some of these altered versions drastically increase the risk of developing Alzheimer's in old age. In previous studies, the Munich researchers found that these special variants put the microglia into an irreversible dormant state, which prevents the immune cells from functioning properly to recognize, absorb and break down plaques and dead cells. "Conversely, we suspect that activation of the microglia could help to eliminate plaques and thus combat Alzheimer's. TREM2 seems to play an important role in this process. The receptor apparently helps to switch the microglia from dormant to active mode," the Munich scientist said.

This is precisely the approach the Munich team and Denali are pursuing. The antibody identified, which is now generated using biotechnological methods, binds to TREM2, thereby triggering processes that enhance microglia activity.

However, the Munich-based biochemist cautioned that further studies are required prior to progressing this approach to clinical trials: "We have shown that immune cells can be stimulated to break down amyloid deposits more effectively. This demonstrates that our approach can work in principle. However, there is still a long way to go before it can be tested in humans and additional data is necessary to validate this approach."

Search for new therapeutic approaches

Current therapies can alleviate the symptoms of Alzheimer's to some extent, but they cannot stop the disease from progressing. "So far, all attempts to treat Alzheimer's effectively have been unsuccessful. Just recently, a clinical trial with two drugs failed. Although there is another experimental agent that seems to have a positive effect on memory, it remains to be seen whether this drug will be approved by regulatory authorities. In view of this situation, innovative therapeutic approaches are urgently needed. This is precisely the aim of our research", said Haass.
-end-
Original publication

Enhancing protective microglia activities with a dual function TREM2 antibody to the stalk region, Kai Schlepckow et al., EMBO Molecular Medicine (2020),
DOI: 10.15252/emmm.201911227

DZNE - German Center for Neurodegenerative Diseases

Related Immune Cells Articles:

Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.
Experience matters for immune cells
The discovery that immune T cells have a spectrum of responsiveness could shed light on how our immune system responds to infections and cancer, and what goes wrong in immune diseases.
Immune cells against Alzheimer's?
German researchers have developed a novel, experimental approach against Alzheimer's.
Arming the body's immune cells
Researchers at UC have discovered a previously unknown mechanism that could explain the reason behind decreased immune function in cancer patients and could be a new therapeutic target for immunotherapy for those with head and neck cancers.
Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
How the immune system becomes blind to cancer cells
Researchers have described the activation of a key protein used by tumor cells to stop the body's immune response.
What protects killer immune cells from harming themselves?
White blood cells, which release a toxic potion of proteins to kill cancerous and virus-infected cells, are protected from any harm by the physical properties of their cell envelopes, find scientists from UCL and the Peter MacCallum Cancer Centre in Melbourne.
How self-reactive immune cells are allowed to develop
A research team at Lund University in Sweden has found the mechanism that controls the growth of B1-cells in mice.
Identification of new populations of immune cells in the lungs
In an article published in Nature Communications, the Immunophysiology Laboratory of the GIGA Institute, headed by Prof.
More Immune Cells News and Immune Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.