Nav: Home

Chip for liquid biopsy will help to detect prostate cancer

March 10, 2020

Researchers of Sechenov University together with their colleagues from Australia used the microfluidics technology to develop a device able to isolate cancer cells from urine of patients with prostate cancer. The study showed high sensitivity and specificity of the new method in diagnosing prostate cancer. The results obtained were published in Cancers.

Prostate cancer is the second most common type of cancer among men: in 2018 about 1.27 million new cases were registered, almost 360,000 patients died. It's not easy to gain a significant decrease of mortality rate because there is no practical or accurate enough method of diagnosis able to detect the disease in its early stage.

Nowadays two methods are usually used to prove the diagnosis: the prostate-speci?c antigen (PSA) blood test and the tissue biopsy - taking the tissue samples for analysis. Both of these methods have significant drawbacks. Blood test is not speci?c enough and can produce false positive results since the PSA level rises not only in case of prostate cancer but also during other diseases of the prostate gland. Tissue biopsy is an invasive examination that can cause adverse side e?ects such as local bleeding and infections. Also, as previous studies have shown, the sensitivity of liquid blood biopsy (isolating cancer cells) is rather poor because of the low level of the cells in blood. So, scientists suggest an alternative that is a liquid urine biopsy: the prostate gland is closely connected with the urethra and cancer cells are washed out during urination.

"As we have shown, while testing this technique we managed to collect 85 (±6) % of the total number of prostate cancer cells as well as to isolate cells from the urine of 86% of patients with localised cancer in the early stage. Now we are trying to optimise the method to improve its efficacy, specificity and sensitivity while the technology itself is going through the patent process," said Alexey Rzhevskiy, research associate in the Institute of Molecular Medicine, Sechenov University.

To isolate cells from the liquid, researchers developed a micro?uidic chip - a device made from polymer with a thin spiral channel, forked on one end, and three holes: one for urine intake and two for cell separation. The chip is so designed that cancer cells which are larger than others shift to the inner wall of the channel and leave it through one of the holes while smaller and lighter cells gather along the outer wall and come out through the other hole. This effect is caused by the joint action of several centrifugal forces.

Scientists labelled the collected cells with ?uorescent antibodies - molecules able to glow while absorbing light of a certain wavelength. Researchers examined cancer cells with the antibodies under a fuorescence microscope and measured the intensity of the light emitted: if it exceeded the calculated threshold, scientists concluded that these cells were cancerous.

The authors tested the device using saline with the known number of cells (in pilot studies) and the samples of urine of healthy volunteers and patients with the prostate cancer. During the pilot experiments the chip isolated from 80 to 90% of cancer cells. Tests with the urine samples were rather successful too: they detected the disease in 12 out of 14 patients with cancer and confirmed the health of 11 out of 14 healthy volunteers.
-end-
The study was conducted by the scientific group under the leadership of Majid Ebrahimi Warkiani, associate professor in University of Technology Sydney, and Andrei Zvyagin, head of the Department of Biomedical Engineering, Sechenov University.

Sechenov University

Related Prostate Cancer Articles:

The Lancet: Prostate cancer study finds molecular imaging could transform management of patients with aggressive cancer
Results from a randomised controlled trial involving 300 prostate cancer patients find that a molecular imaging technique is more accurate than conventional medical imaging and recommends the scans be introduced into routine clinical practice.
Common genetic defect in prostate cancer inspires path to new anti-cancer drugs
Researchers found that, in prostate cancer, a mutation leading to the loss of one allele of a tumor suppressor gene known as PPP2R2A is enough to worsen a tumor caused by other mutations.
First prostate cancer therapy to target genes delays cancer progression
For the first time, prostate cancer has been treated based on the genetic makeup of the cancer, resulting in delayed disease progression, delayed time to pain progression, and potentially extending lives in patients with advanced, metastatic prostate cancer, reports a large phase 3 trial.
Men taking medications for enlarged prostate face delays in prostate cancer diagnosis
University of California San Diego School of Medicine researchers report that men treated with medications for benign prostatic hyperplasia (enlarged prostate) experienced a two-year delay in diagnosis of their prostate cancer and were twice as likely to have advanced disease upon diagnosis.
CNIO researchers confirm links between aggressive prostate cancer and hereditary breast cancer
The study has potential implications for families with members suffering from these types of tumours who are at an increased risk of developing cancer.
Distinguishing fatal prostate cancer from 'manageable' cancer now possible
Scientists at the University of York have found a way of distinguishing between fatal prostate cancer and manageable cancer, which could reduce unnecessary surgeries and radiotherapy.
Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.
ASCO and Cancer Care Ontario update guideline on radiation therapy for prostate cancer
The American Society of Clinical Oncology (ASCO) and Cancer Care Ontario today issued a joint clinical practice guideline update on brachytherapy (internal radiation) for patients with prostate cancer.
Patient prostate tissue used to create unique model of prostate cancer biology
For the first time, researchers have been able to grow, in a lab, both normal and primary cancerous prostate cells from a patient, and then implant a million of the cancer cells into a mouse to track how the tumor progresses.
Moffitt Cancer Center awarded $3.2 million grant to study bone metastasis in prostate cancer
Moffitt researchers David Basanta, Ph.D., and Conor Lynch, Ph.D., have been awarded a U01 grant to investigate prostate cancer metastasis.
More Prostate Cancer News and Prostate Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.