Microplastics affect the survival of amphibians and invertebrates in river ecosystems

March 10, 2020

Concern about contamination caused by microplastics is growing; owing to their abundance, ubiquity and persistence over time, microplastics pose a potential risk for organisms and ecosystems. Yet studies into their distribution in freshwater systems, in both lakes and rivers, and their effects on the organisms in these waters are few and far between, and there is very little information about their potential effect on the functioning of these ecosystems.

In this context, in collaboration with the National Museum of Natural Sciences (CSIC-National Research Council) in Madrid, the UPV/EHU's Stream Ecology research group has studied "the effects of microplastics on freshwater ecosystems and on two of the most important groups of organisms that live in them: amphibians and invertebrates", explained Naiara López-Rojo, researcher in the UPV/EHU group. To do this they conducted lab experiments in which they replicated the conditions of the rivers and ponds where these animals live, and exposed them to different concentrations of fluorescent microplastics: "Replicas without microplastics (control), at a low, at an intermediate and at a high concentration, while the remaining characteristics were identical (light, temperature, etc.)."

That way the group studied firstly the effect of the microplastics on tadpole survival, food and growth as well as the ingestion and egestion of them. In addition "we analysed whether the microplastics attach themselves to periphyton (set of microscopic organisms that grow on the rocks at the bottom of the river or pond and main source of food for the tadpoles) and whether their productivity changes, because that would demonstrate an alteration in the way freshwater ecosystems function", said the researcher. Secondly, they examined the effects of the microplastics on the decomposition of the leaf litter (one of the most important processes in river ecosystems) and on the survival and growth of organisms that feed on it (detritivore invertebrates); they also studied the degree of attachment of the microplastics to the leaf litter and degree of ingestion and egestion of the detritivores, thus evaluating the trophic transfer mechanisms of the microplastics.

Combination with other stressors

The results demonstrate that "microplastics cause mortality in detritivores in all their concentrations (in the highest concentration mortality is nine times higher) but their growth is not affected. In the case of tadpoles, we saw that they die in the highest concentration of microplastics; in the other concentrations we did not see any lethality, but we did see a reduction in the growth of the amphibians", added López-Rojo.

The fluorescence studies conducted on the tadpoles indicate, according to the researcher, "a presence of microplastics in the organisms, in their faeces and in the periphyton. And that suggests that microplastics could be significant stressors for amphibians, like other contaminants, climate change, habitat loss, etc. Amphibians could also be a significant transmission channel of freshwater microplastics to terrestrial ecosystems". In the case of the invertebrates, the tests suggest that the microplastics were also ingested (very likely through the ingestion of particles attached to the leaf litter) and some of them were excreted. The more the concentration of microplastics increased, the less the leaf litter decomposed. "These results provide fresh evidence of the damaging effects of this contaminant on aquatic insects and on the functioning of river ecosystems, and highlight the need to standardise the methods to be used in future experiments on microplastics to be able to draw comparisons," concluded the researcher in the UPV/EHU's Department of Plant Biology and Ecology.

López-Rojo stresses the need to go on exploring the effect of this kind of contaminant on freshwater ecosystems: "We are seeing that the outcome depends on the type of organism you study, exposure time, etc. More prolonged exposure would need to be studied because in actual fact the plastics persist for much longer than 15 days. It would also be interesting to study the effect of this contaminant together with other types of stressors which both rivers and ponds are subjected to. The reason is that the interaction among various stressors could turn out to be even more harmful."
-end-


University of the Basque Country

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.