Planet's largest ecosystems collapse faster than previously forecast

March 10, 2020

New research has shown that large ecosystems such as rainforests and coral reefs can collapse at a significantly faster rate than previously understood. The findings suggest that ecosystems the size of the Amazon forests could collapse in only 49 years and the Caribbean coral reefs in just 15 years.

It is well know that ecosystems can transform rapidly when put under stress. Clear lakes can be transformed into green waters, coral reefs can become bleached and sparsely populated as algae disappears and rain forests can shift to savanna grassland as deforestation causes a change in humidity.

Scientists from the University of Southampton, the School of Oriental and African Studies and the University of Bangor studied data on the transformations of 40 natural environments on land and in waters. These varied in size from small ponds to the black sea aquatic ecosystem. This data had been compiled from scientific publications, institutional reports and online databases about regime shifts and thresholds.

The team discovered that whilst larger ecosystems took longer to collapse - due to their sheer size - the rate at which the transformation occurred was significantly faster than the pace of change for smaller systems.

The findings, published in the scientific journal Nature Communications, can be explained by the fact larger ecosystems are made up of more compartments, or sub-systems, of species and habitats. This modular set up provides resilience against stress initially; however once a certain threshold has been passed, the same modularity causes the rate at which the ecosystem unravels to accelerate. This means that ecosystems that have existed for thousands of years could collapse in less than 50.

John Dearing, Professor in Physical Geography at the University of Southampton, who led the research said: "The messages here are stark. We need to prepare for changes in our planet's ecosystems that are faster than we previously envisaged."

The unravelling effects that Professor Dearing and his team have highlighted are probably illustrated by the rapid spread of bush fires recently seen in Australia and magnify concerns about the effects that the recent fires in the Amazon rainforest will have on its ability to withstand climate change.

Professor Dearing concluded, "These findings are yet another call for halting the current damage being imposed on our natural environments that pushes ecosystems to their limits."
-end-
Notes to Editors

The paper "Regime shifts occur disproportionately faster in larger ecosystems" has been published in Nature Communications with DOI 10.1038/s41467-020-15029-x. It will be available at https://www.nature.com/articles/s41467-020-15029-x

For further information and interview requests, please contact the Steve Bates or Peter Franklin, Media Relations Team at University of Southampton, press@southampton.ac.uk ; 02380 593212

University of Southampton

Related Coral Reefs Articles from Brightsurf:

The cement for coral reefs
Coral reefs are hotspots of biodiversity. As they can withstand heavy storms, they offer many species a safe home.

Palau's coral reefs: a jewel of the ocean
The latest report from the Living Oceans Foundation finds Palau's reefs had the highest coral cover observed on the Global Reef Expedition--the largest coral reef survey and mapping expedition in history.

Shedding light on coral reefs
New research published in the journal Coral Reefs generates the largest characterization of coral reef spectral data to date.

Uncovering the hidden life of 'dead' coral reefs
'Dead' coral rubble can support more animals than live coral, according to University of Queensland researchers trialling a high-tech sampling method.

Collaboration is key to rebuilding coral reefs
The most successful and cost-effective ways to restore coral reefs have been identified by an international group of scientists, after analyzing restoration projects in Latin America.

Coral reefs show resilience to rising temperatures
Rising ocean temperatures have devastated coral reefs all over the world, but a recent study in Global Change Biology has found that reefs in the Eastern Tropical Pacific region may prove to be an exception.

Genetics could help protect coral reefs from global warming
The research provides more evidence that genetic-sequencing can reveal evolutionary differences in reef-building corals that one day could help scientists identify which strains could adapt to warmer seas.

Tackling coral reefs' thorny problem
Researchers from the Okinawa Institute of Science and Technology Graduate University (OIST) have revealed the evolutionary history of the crown-of-thorns starfish -- a predator of coral that can devastate coral reefs.

The state of coral reefs in the Solomon Islands
The ''Global Reef Expedition: Solomon Islands Final Report'' summarizes the foundation's findings from a monumental research mission to study corals and reef fish in the Solomon Islands and provides recommendations on how to preserve these precious ecosystems into the future.

Mysterious glowing coral reefs are fighting to recover
A new study by the University of Southampton has revealed why some corals exhibit a dazzling colorful display, instead of turning white, when they suffer 'coral bleaching' -- a condition which can devastate reefs and is caused by ocean warming.

Read More: Coral Reefs News and Coral Reefs Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.