Nav: Home

Some domesticated plants ignore beneficial soil microbes

March 10, 2020

While domestication of plants has yielded bigger crops, the process has often had a negative effect on plant microbiomes, making domesticated plants more dependent on fertilizer and other soil amendments than their wild relatives.

In an effort to make crops more productive and sustainable, researchers recommend reintroduction of genes from the wild relatives of commercial crops that restore domesticated plants' ability to interact with beneficial soil microbes.

Thousands of years ago, people harvested small wild plants for food. Eventually, they selectively cultivated the largest ones until the plump cereals, legumes, and fruit we know today evolved. But through millennia of human tending, many cultivated plants lost some ability to interact with soil microbes that provide necessary nutrients. This has made some domesticated plants more dependent on fertilizer, one of the world's largest sources of nitrogen and phosphorous pollution and a product that consumes fossil fuels to produce.

"I was surprised how completely hidden these changes can be," said Joel Sachs, a professor of biology at UC Riverside and senior author of a paper published today in Trends in Ecology and Evolution. "We're so focused on above ground traits that we've been able to massively reshape plants while ignoring a suite of other characteristics and have inadvertently bred plants with degraded capacity to gain benefits from microbes."

Bacteria and fungi form intimate associations with plant roots that can dramatically improve plant growth. These microbes help break down soil elements like phosphorous and nitrogen that the plants absorb through their roots. The microbes also get resources from the plants in a mutually beneficial, or symbiotic, relationship. When fertilizer or other soil amendments make nutrients freely available, plants have less need to interact with microbes.

Sachs and first author Stephanie Porter of Washington State University, Vancouver, reviewed 120 studies of microbial symbiosis in plants and concluded that many types of domesticated plants show a degraded capacity to form symbiotic communities with soil microbes.

"The message of our paper is that domestication has hidden costs," Sachs said. "When plants are selected for a small handful of traits like making a bigger seed or faster growth, you can lose a lot of important traits relating to microbes along the way."

This evolutionary loss has turned into a loss for the environment as well.

Excess nitrogen and phosphorous from fertilizer can leach from fields into waterways, leading to algae overgrowth, low oxygen levels, and dead zones. Nitrogen oxide from fertilizer enters the atmosphere, contributing to air pollution. Fossil fuels are also consumed to manufacture fertilizers.

Some companies have begun selling nitrogen-fixing bacteria as soil amendments to make agriculture more sustainable, but Sachs said these amendments don't work well because some domesticated plants can no longer pick up those beneficial microbes from the soil.

"If we're going to fix these problems, we need to figure out which traits have been lost and which useful traits have been maintained in the wild relative," Sachs said. "Then breed the wild and domesticated together to recover those traits."

University of California - Riverside

Related Evolution Articles:

Artificial evolution of an industry
A research team has taken a deep dive into the newly emerging domain of 'forward-looking' business strategies that show firms have far more ability to actively influence the future of their markets than once thought.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at