Nav: Home

The fiddlers influencing mangrove ecosystems

March 11, 2019

The types of bacteria present in and around mangrove fiddler crab burrows in three different geographic locations were compared by KAUST researchers. They found that the crabs' burrowing activity changed the sediment in a way that attracted different types of bacteria across the three locations: however, the bacteria performed similar functions, such as aerobic respiration, and potential ecological services, such as turnover of organic matter.

"Mangrove crabs act like ecosystem engineers: Their burrows create radial, halo-like microbiological and geochemical modifications to the surrounding sediment compared with soil that has been left undisturbed," says Jenny Booth, the first author of the study. "This effect was similar in all three locations, with the burrow-dwelling bacteria being taxonomically different but functionally similar," she adds.

Microorganisms play important roles in driving global biochemical cycles, such as the nitrogen cycle, in which nitrogen--a building block of proteins and nucleic acids-- circulates among the earth, the atmosphere and marine ecosystems.

Microbial ecologist Daniele Daffonchio and his team at KAUST's Red Sea Research Center hypothesized that bacteria present within the same model system had similar functions, rather than similar taxonomy, even when these systems existed in very different local environmental conditions.

To test this, they sampled the sediment in and around the burrows created by mangrove-dwelling fiddler crabs in two locations on the Saudi Red Sea and a third in South Africa.

The researchers say their findings could be explained by the fact that burrowing leads to similar changes in the sediment regardless of location. Crabs typically bring sediment up from deeper layers onto the surface and vice versa. This sediment mixing changes the biochemical composition of the surrounding sediment, creating a hotspot of oxidative reactions and changing the types of bacteria living there. Burrow sediment, for example, has more bacteria that use oxygen for respiration, while the surrounding bulk soils have more bacteria that employ anaerobic respiration mechanisms. Sediment mixing also increases nutrient availability, and thus bacterial activity, within the burrow soils.

The researchers estimate that the halo-like ring of biochemical and microbial changes that extend a small distance around the fiddler crab burrows can influence up to 35 percent of mangrove sediment. In Kenyan mangroves, where burrow density is very high, this effect can influence almost 80 percent of the sediment.

"We predict that the bioturbation effect of crabs and similar burrowing species has a large overall impact on mangrove ecosystems by altering the nature of the sediment's microbiome. These changes ultimately govern environmental processes, like carbon and nutrient fluxes, in this coastal ecosystem," says Daffonchio.
-end-


King Abdullah University of Science & Technology (KAUST)

Related Bacteria Articles:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.
How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.