Nav: Home

Spontaneous spin polarization demonstrated in a two-dimensional material

March 11, 2019

Physicists from the University of Basel have demonstrated spin alignment of free electrons within a two-dimensional material. Writing in the latest edition of Nature Nanotechnology, they described their observation of spontaneous spin polarization, which cannot occur in ideal two-dimensional materials according to a well-known theorem from the 1960s.

Two-dimensional materials are the subject of numerous studies. As they are only a few atomic layers thick, they have different physical properties from their three-dimensional equivalents. Graphene, a single layer of carbon atoms arranged in a honeycomb pattern, promises to deliver entirely new applications thanks to its notable electronic properties and is the best-known example of this group of innovative materials.

Professor Richard Warburton from the Department of Physics and the Swiss Nanoscience Institute of the University of Basel leads a group studying two-dimensional materials that are also suitable for optical applications. One particularly promising candidate is a single monolayer of molybdenum disulfide (MoS2), as this material has a band gap - unlike graphene - and can therefore emit light when excited.

All in the same direction

Now, in the latest analyses of two-dimensional molybdenum disulfide layers, doctoral students Jonas Roch and Nadine Leisgang have made a very surprising discovery. They filled the MoS2 layer with free electrons and then exposed it to a weak magnetic field.

This caused the intrinsic angular momentum (spin) of all free electrons to point in the same direction, and the spin could be "switched" to the other direction by reversing the magnetic field. Known as "spontaneous spin polarization," this phenomenon came as a complete surprise because a theorem from the 1960s rules out spontaneous spin polarization in an ideal two-dimensional material.

"Where does the spin polarization come from? The electrons are interacting with one another, and molybdenum disulfide also exhibits a very weak spin-orbit coupling. These two factors presumably have a massive influence on the system," explains Jonas Roch. The formulation of the 1966 theorem had assumed an absence of spin-orbit interaction.

"The results show how exciting experimental physics can be, and how we're constantly learning new things about two-dimensional materials," says Richard Warburton.
-end-
The project is supported by the Swiss National Science Foundation, the Swiss Nanoscience Institute, the National Center of Compentence in Research QSIT, and the PhD school Quantum Computing and Quantum Technology of the Departement of Physics at the University of Basel.

University of Basel

Related Graphene Articles:

New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.
Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.
Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).
How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.
Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.
How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.
Graphene is 3D as well as 2D
Graphene is actually a 3D material as well as a 2D material, according to a new study from Queen Mary University of London.
How to purify water with graphene
Scientists from the National University of Science and Technology 'MISIS' together with their colleagues from Derzhavin Tambov State University and Saratov Chernyshevsky State University have figured out that graphene is capable of purifying water, making it drinkable, without further chlorination.
Decoupled graphene thanks to potassium bromide
The use of potassium bromide in the production of graphene on a copper surface can lead to better results.
1 + 1 does not equal 2 for graphene-like 2D materials
Physicists from the University of Sheffield have discovered that when two atomically thin graphene-like materials are placed on top of each other their properties change, and a material with novel hybrid properties emerges, paving the way for design of new materials and nano-devices.
More Graphene News and Graphene Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.