Nav: Home

Southern Ocean acidification puts marine organisms at risk

March 11, 2019

New research indicates that acidification of the Southern Ocean will cause a layer of water to form below the surface that corrodes the shells of some sea snails, an outcome that could disrupt marine food webs.

University of Colorado Boulder and University of Alaska Fairbanks researchers collaborated on the study, which was published today in the journal Nature Climate Change.

Pteropods, a type of sea snail, typically live in the upper 300 meters of the water column in the Southern Ocean. Due to acidification by 2100, they may only be able to thrive on average in the top 83 meters of water. That's assuming the current level of carbon dioxide released into the atmosphere continues.

Gabriela Negrete-García, who led the study as a CU Boulder undergraduate, made the forecast based on data from a global climate model and water samples from the Southern Ocean, which surrounds Antarctica.

Pteropods rely on naturally occurring carbonate ions to build and maintain their aragonite mineral shells. As oceans absorb human-made atmospheric carbon dioxide, the water's chemistry is altered, lowering its pH and reducing the concentration of these carbonate building blocks.

The study identified the depth, known as a horizon, at which the carbonate ion concentration of sea water is inadequate to sustain aragonite shell production.

"In this study we found not just one horizon at a deep depth, but suddenly we see a second shallow horizon emerge that encroaches into pteropod habitat," said Claudine Hauri, co-author and a chemical oceanographer at UAF's International Arctic Research Center.

The present-day horizon exceeds 1,000 meters across most of the Southern Ocean, a depth that is well below pteropod habitat.

The new shallow horizon would be a layer of corrosive water beginning at an average depth of 83 meters, greatly reducing viable pteropod habitat. If that occurs, it could impact marine food webs significantly and lead to cascading changes across ocean ecosystems, including disruptions of vital global fisheries.

The study forecast ocean acidification under several carbon dioxide emission scenarios.

The individual simulations created by the model differed on when the shallow horizon will emerge. Some estimate it began as early as 2006 in discrete locations, while others predict it will begin as late as 2038. The research suggests that the change may be inevitable in large regions of the Southern Ocean, regardless of future mitigation efforts.

"If emissions were curbed tomorrow, this suddenly shallow horizon would still appear, even if possibly delayed," said Nicole Lovenduski of CU Boulder. "And that inevitability, along with the lack of time for organisms to adapt, is most concerning."

The Southern Ocean's cold water is particularly vulnerable to acidification. The cold facilitates naturally low carbonate ion concentrations. Persistent upwelling also brings carbon-rich water close to the surface, further decreasing carbonate ion concentrations.

"These factors put us closer to a threshold that might be harmful for a lot of organisms," said Hauri.

There are important parallels between the cold Southern Ocean and northern seas that could indicate that Alaska's coastal waters are similarly at risk. Hauri has now developed an Alaska regional model to explore ocean acidification impacts around the state.
-end-
Additional co-authors of the study included Kristen Krumhardt of CU Boulder and Siv Lauvset of the University of Bergen in Norway.

University of Alaska Fairbanks

Related Acidification Articles:

Ocean acidification impacts oysters' memory of environmental stress
Researchers from the University of Washington School of Aquatic and Fishery Sciences have discovered that ocean acidification impacts the ability of some oysters to pass down 'memories' of environmental trauma to their offspring.
Coral 'helper' stays robust under ocean acidification
A type of algae crucial to the survival of coral reefs may be able to resist the impacts of ocean acidification caused by climate change.
Ocean acidification is damaging shark scales
Sharks have unusual type of scales referred to as 'denticles.' A research group from South Africa and Germany that includes Jacqueline Dziergwa and Professor Dr.
Farmed oysters able to protect themselves from acidification
Oysters bred for fast growth and disease resistance are able to adapt their shell growth to protect themselves from environmental acidification, according to new research.
Coral skeleton crystals record ocean acidification
The acidification of the oceans is recorded in the crystals of the coral skeleton.
Ocean acidification 'could have consequences for millions'
Ocean acidification could have serious consequences for the millions of people globally whose lives depend on coastal protection, fisheries and aquaculture, a new publication suggests.
Southern Ocean acidification puts marine organisms at risk
New research co-authored by University of Alaska indicates that acidification of the Southern Ocean will cause a layer of water to form below the surface that corrodes the shells of some sea snails.
Ocean acidification harms cod larvae more than previously thought
The Atlantic cod is one of the most important commercial fish species in the world.
Business as usual for Antarctic krill despite ocean acidification
A new IMAS-led study has found that Antarctic krill are resilient to the increasing acidification of the ocean as it absorbs more C02 from the atmosphere due to anthropogenic carbon emissions.
Ocean acidification may reduce sea scallop fisheries
Each year, fishermen harvest more than $500 million worth of Atlantic sea scallops from the waters off the east coast of the United States.
More Acidification News and Acidification Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.