Researchers uncover additional evidence for massive solar storms

March 11, 2019

Our planet is constantly being bombarded by cosmic particles. However, at times the stream of particles is particularly strong when a solar storm sweeps past. Solar storms are made up of high-energy particles unleashed from the sun by explosions on the star's surface.

For the past 70 years, researchers have studied these solar storms by direct instrumental observations, which has led to an understanding of how they can pose a risk to the electrical grid, various communication systems, satellites and air traffic. Two examples of severe solar storms in modern times that caused extensive power cuts took place in Quebec, Canada, (1989) and Malmö, Sweden (2003).

Now, an increasing amount of research indicates that solar storms can be even more powerful than measurements have shown so far via direct observations.

The researchers behind the new, international study led by researchers from Lund University have used drilled samples of ice, or ice cores, to find clues about previous solar storms. The cores come from Greenland and contain ice formed over the past about 100 000 years. The material contains evidence of a very powerful solar storm that occurred in 660 BCE.

"If that solar storm had occurred today, it could have had severe effects on our high-tech society", says Raimund Muscheler, professor of geology at Lund University.

The new study means that a third known case of a massive solar storm dating back in time has been discovered via indirect observations in nature's own archive. Raimund Muscheler also took part in research that confirmed the existence of two other massive solar storms, using both ice cores and the annual growth rings of old trees. These storms took place in 775 and 994 CE.

Raimund Muscheler points out that, even though these massive solar storms are rare, the new discovery shows that they are a naturally recurring effect of solar activity.

"That's why we must increase society's protection again solar storms", he says.

Today's risk assessment is largely based on direct observations made over the past 70 years, but Raimund Muscheler suggests that there is a need for a reassessment in view of the three massive solar storms that have now been discovered. He argues that there is a need for greater awareness of the possibility of very strong solar storms and the vulnerability of our society.

"Our research suggests that the risks are currently underestimated. We need to be better prepared", concludes Raimund Muscheler.
-end-


Lund University

Related Ice Cores Articles from Brightsurf:

Ice-binding molecules stop ice growth, act as natural antifreeze
Certain molecules bind tightly to the surface of ice, creating a curved interface that can halt further ice growth.

At our cores, we're all strengthened by 'dumbbells'
Scientists at Rice's Center for Theoretical Biological Physics detail the structure of dumbbell-like sequences in DNA during interphase that suggest several unseen aspects of chromosome configuration and function.

210Pb dating of marine sedimentary cores
Fourteen laboratories participated in this interlaboratory comparison exercise (ILC). The results indicated good analytical performance by the participating laboratories, but the results of the 210Pb dating did not reach the desired level of satisfaction.

Ice discharge in the North Pacific set off series of climate events during last ice age
Repeated catastrophic ice discharges from western North America into the North Pacific contributed to, and perhaps triggered, hemispheric-scale changes in the Earth's climate during the last ice age.

Sea ice triggered the Little Ice Age, finds a new study
A new study finds a trigger for the Little Ice Age that cooled Europe from the 1300s through mid-1800s, and supports surprising model results suggesting that under the right conditions sudden climate changes can occur spontaneously, without external forcing.

Seasonal sea ice changes hold clues to controlling CO2 levels, ancient ice shows
New research has shed light on the role sea ice plays in managing atmospheric carbon dioxide levels.

HIV-1 viral cores enter the nucleus collectively through the nuclear endocytosis-like pathway
How HIV-1 viral cores enter the nucleus through the undersized nuclear pore remains mysterious.

The 'cores' of massive galaxies had already formed 1.5 billion years after the big bang
A distant galaxy more massive than our Milky Way -- with more than a trillion stars - has revealed that the 'cores' of massive galaxies in the Universe had formed already 1.5 billion years after the Big Bang, about 1 billion years earlier than previous measurements revealed.

Evidence: Antarctica's thinning ice shelves causing more ice to move from land into sea
New study provides the first evidence that thinning ice shelves around Antarctica are causing more ice to move from the land into the sea.

Two million-year-old ice cores provide first direct observations of an ancient climate
Princeton University-led researchers have extracted 2 million-year-old ice cores from Antarctica -- the oldest yet recovered -- that provide the first direct observations of prehistoric atmospheric conditions and temperatures.

Read More: Ice Cores News and Ice Cores Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.