Nav: Home

Fossil teeth from Kenya solve ancient monkey mystery

March 11, 2019

AUSTIN, Texas -- The teeth of a new fossil monkey, unearthed in the badlands of northwest Kenya, help fill a 6-million-year void in Old World monkey evolution, according to a study by U.S. and Kenyan scientists published in the Proceedings of the National Academy of Sciences.

The discovery of 22-million-year-old fossilized monkey teeth -- described as belonging to a new species, Alophia metios -- fills a void between a previously discovered 19-million-year-old fossil tooth in Uganda and a 25-million-year-old fossil tooth found in Tanzania. The finding also sheds light on how their diet may have changed the course of their evolution.

"For a group as highly successful as the monkeys of Africa and Asia, it would seem that scientists would have already figured out their evolutionary history," said the study's corresponding author John Kappelman, an anthropology and geology professor at The University of Texas at Austin. "Although the isolated tooth from Tanzania is important for documenting the earliest occurrence of monkeys, the next 6 million years of the group's existence are one big blank. This new monkey importantly reveals what happened during the group's later evolution."

Since the time interval from 19 to 25 million years ago is represented by a small number of African fossil sites, the team targeted the famous fossil-rich region of West Turkana to try to fill in that blank.

"Today, this region is very arid," said Benson Kyongo, a collections manager at the National Museums of Kenya. "But millions of years ago, it was a forest and woodland landscape crisscrossed by rivers and streams. These ancient monkeys were living the good life."

While in the field, the team uncovered hundreds of mammal and reptile jaws, limbs and teeth ranging from 21 million to more than 24 million years old, including remains of early elephants. The newly discovered monkey teeth are more primitive than geologically younger monkey fossils, lacking what researchers referred to as "lophs," or a pair of molar crests, thus earning the new species its name, Alophia, meaning "without lophs."

"These teeth are so primitive that when we first showed them to other scientists, they told us, "Oh no, that isn't a monkey. It's a pig," said Ellen Miller, an anthropology professor at Wake Forest University. "But because of other dental features, we are able to convince them that yes, it is in fact a monkey."

The success of Old World monkeys appears to be closely tied to their unique dentition, researchers said. Today, the configuration of cusps and lophs on the molar teeth enable them to process the wide range of plant and animal foods encountered in the diverse environments of Africa and Asia.

"You can think of the modern-day monkey molar as the uber food processor, able to slice, dice, mince and crush all sorts of foods," said Mercedes Gutierrez, an anatomy professor at the University of Minnesota.

"How and when this unique dentition evolved is one of the unanswered questions in primate evolution," said James Rossie, an anthropology professor at Stony Brook University. The researchers speculated that Alophia's primitive dentition was adapted to a diet that consisted of hard fruits, seeds and nuts, and not leaves, which are more efficiently processed by the more evolved dentition of fossil monkeys dating from after 19 million years ago.

"It is usually assumed that the trait responsible for a group's success evolved when the group originated, but Alophia shows us this is not the case for Old World monkeys," said Samuel Muteti, a researcher at the National Museums of Kenya. "Instead, the characteristic dentition of modern monkeys evolved long after the group first appeared."

The researchers hypothesized that the inclusion of leaves in the diet is what later drove monkey dental evolution.

Monkeys originated at a time when Africa and Arabia were joined as an island continent, with its animals evolving in isolation until docking with Eurasia sometime between 20 million and 24 million years ago. It was only after docking that the mammals today typically considered "African" - antelope, pigs, lions, rhinos, etc. - made their entry onto the continent. So, researchers asked: Could this event and possible competition between the residents and the newly arrived Eurasian species have driven monkeys to exploit leaves, or did changing climates serve to make leaves a more attractive menu entrée?

"The way to test between these hypotheses is to collect more fossils," Kappelman said. "Establishing when, exactly, the Eurasian fauna entered Afro-Arabia remains one of the most important questions in paleontology, and West Turkana is one of the only places we know of to find that answer."

The team intends to be back in the field later this year.
-end-
NOTE TO EDITORS: John Kappelman took the lead of the current study after the death in 2014 of D. Tab Rasmussen of Washington University in St. Louis. Rasmussen is listed as the first author in PNAS.

University of Texas at Austin

Related Evolution Articles:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.