Breakthrough made towards building the world's most powerful particle accelerator

March 11, 2020

An international team of researchers, affiliated with UNIST has for the first time succeeded in demonstrating the ionization cooling of muons. Regarded as a major step in being able to create the world's most powerful particle accelerator, this new muon accelerator is expected to provide a better understanding of the fundamental constituents of matter.

This breakthrough has been carried out by the Muon Ionization Cooling Experiment (MICE) collaboration, which includes many UK scientists, as well as Professor Moses Chung and his research team in the School of Natural Sciences at UNIST. Their findings have been published in the online version of Nature on February 5, 2020.

"We have succeeded in realizing muon ionization cooling, one of our greatest challenges associated with developing muon accelerators," says Professor Chung. "Achievement of this is considered especially important, as it could change the paradigm of developing the Lepton Collider that could replace the Neutrino Factory or the Large Hadron Collider (LHC)."

Muons are naturally occurring particles that are generated in the Earth's upper atmosphere by cosmic rays collisions, thus are regarded as a follow-on particle accelerator to replace the LHC. Protons, a type of hardon, are primarily used by the LHC and they partake in strong interactions. Leptons, like the electron and the muon, are not subject to the strong interaction, rather they interact via the weak force.

Muons have an extremely brief lifespan of two millionths of a second. They are produced by smashing a beam of protons into a target. These muons form a diffuse cloud, meaning that they are difficult to accelerate and there is a low chance of them colliding and producing useful interesting physical phenomena. To make the cloud less diffuse, a process known as 'Beam cooling' was suggested. This involves getting the muons closer together and moving in the same direction. However, due to the ultra-short lifespan of muons, it has been impossible to cool the beam with the traditional methods.

To tackle this challenge, the MICE collaboration team succeeded in channelling muons into a small enough volume to be able to study physics in new systems via a method, known as Ionization Cooling, which was previously suggested and developed into theoretically operable schemes in the 1980s.

The results of the experiment, carried out using the MICE muon beam-line at the Science and Technology Facilities Council (STFC) ISIS Neutron and Muon Beam facility on the Harwell Campus in the UK, clearly shows that the phase-space volume occupied by the muon beam can be controlled via the ionization cooling, as predicted by the theory.
-end-
This achievement is the result of 20 years of hard work, involving 100 researchers throughout the world. Professor Chung and ChangKyu Sung (Department of Physics, UNIST) were the only Korean researchers who partook in this collaboration. This research has been supported by the SRC project via the National Research Foundation (NRF).

Journal Reference

MICE collaboraboration, "Demonstration of cooling by the Muon Ionization Cooling Experiment," Nature, (2020).

Ulsan National Institute of Science and Technology(UNIST)

Related Particle Accelerator Articles from Brightsurf:

Understanding ghost particle interactions
Argonne scientists were part of a team that constructed a nuclear physics model capturing the interactions between neutrinos and atomic nuclei.

Giant particle accelerator in the sky
A new study led by researchers from GFZ German Research Centre for Geosciences shows that electrons in the radiation belts can be accelerated to very high speeds locally.

World record: Plasma accelerator operates right around the clock
A team of researchers at DESY has reached an important milestone on the road to the particle accelerator of the future.

A binary star as a cosmic particle accelerator
Scientists have identified the binary star Eta Carinae as a new kind of source for very high-energy (VHE) cosmic gamma-radiation.

A new machine learning method streamlines particle accelerator operations
SLAC researchers have developed a new tool, using machine learning, that may make part of the accelerator tuning process 5 times faster compared to previous methods.

Particle billiards with three players
Light can be used to knock electrons out of atoms, with light particles and electrons bouncing off each other like two billiard balls - Compton scattering.

Tiny double accelerator recycles energy
A team of DESY scientists has built a miniature double particle accelerator that can recycle some of the laser energy fed into the system to boost the energy of the accelerated electrons a second time.

Breakthrough made towards building the world's most powerful particle accelerator
An international team of researchers, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has for the first time succeeded in demonstrating the ionization cooling of muons.

An intelligent and compact particle analyzer
Microscopic particles cannot be seen by human eye but are everywhere.

New quasi-particle discovered: The Pi-ton
New particles are usually only found in huge particle accelerators.

Read More: Particle Accelerator News and Particle Accelerator Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.