Nav: Home

Natural organic matter influences arsenic release into groundwater

March 11, 2020

Millions of people worldwide consume water contaminated with levels of arsenic that exceed those recommended by the World Health Organization. This could cause health problems, such as arsenic poisoning, cardiovascular disease and cancer. Microbes in groundwater release arsenic from sediments, and organic matter helps fuel this reaction. Now, researchers reporting in ACS' Environmental Science & Technology have discovered that the type of natural organic matter (NOM) influences the rate and level of arsenic release.

Arsenic occurs naturally in the minerals that make up aquifer sediments. Some species of bacteria can dissolve arsenic- and iron-containing minerals, releasing arsenic into the water. Scientists have tried to simulate this process in the lab by using simple carbon sources, such as acetate and lactate, as food for arsenic-freeing bacteria. However, NOM in groundwater contains more complex carbon sources, such as plant-derived organic matter, amino acids and carbohydrates. Andreas Kappler and colleagues wanted to study how NOM from actual aquifer sediments near the village of Van Phuc, Vietnam (where groundwater is contaminated with high levels of arsenic), influenced arsenic release.

In the field, the team collected sediment samples from the aquifer as far down as 150 feet below ground level. They found more total NOM, and more complex molecules within that NOM, from upper clayey silt layers than from lower sandy sediments. Back in the lab, the researchers placed arsenic-containing minerals and simulated groundwater in test tubes. Then, they added acetate/lactate or NOM from the two layers. At first, they found that acetate/lactate caused bacteria in the sediments to release more arsenic than when they added NOM from the clayey silt or sandy layers. However, after 100 days, the tubes with NOM from the two aquifer layers contained more dissolved arsenic, as well as more diverse microbial communities, than those containing lactate/acetate. Although NOM from the aquifer caused bacteria to release arsenic more slowly than the simple carbon sources, over time it could help free the same amount of or even more arsenic, the researchers say.
-end-
The authors acknowledge funding from the Deutsche Forschungsgemeinschaft, the Institutional Strategy of the University of Tübingen, the Collaborative Research Center CAMPOS and an Emmy Noether Programme.

The paper's abstract will be available on March 11 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acs.est.9b07183

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS' mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and its people. The Society is a global leader in providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a specialist in scientific information solutions (including SciFinder® and STN®), its CAS division powers global research, discovery and innovation. ACS' main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter | Facebook

American Chemical Society

Related Cancer Articles:

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.
Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.
Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.