Nav: Home

Caught in a spin: Spiral vortex streamlines delivery of nanomaterials into cells

March 11, 2020

The membrane surrounding cells acts as a selective barrier, cradling and protecting the cell's contents from the external surroundings and choosing which substances to allow in or out of the cell. Scientists have therefore struggled to engineer efficient methods of delivering nanomaterials, such as DNA, proteins and drugs, into cells.

Now, researchers from Korea University, in collaboration with the Okinawa Institute of Science and Technology Graduate University (OIST), have developed a rapid and efficient delivery method that uses the power of a tiny fluid vortex to deform the cell membranes. Their findings were recently published in the journal, ACS Nano.

"Current methods suffer from numerous limitations, including issues with scalability, cost, low efficiency and cytotoxicity," said Professor Aram Chung from the School of Biomedical Engineering at Korea University, who led the study. "Our aim was to use microfluidics, where we exploited the behavior of tiny currents of water, to develop a powerful new solution for intracellular delivery."

The new device - a microfluidic chip called a 'spiral hydroporator' - can deliver nanomaterials into around one million cells each minute, with up to 96% efficiency. Moreover, the entire process is achieved without irreversibly damaging the cells, with up to 94% of the cells surviving the process.

"The chips are really affordable to make and simple to use," said Professor Chung. "You just pump a fluid containing the cells and nanomaterials in two ends, and the cells - now containing the nanomaterial - flow out of the other two ends. The entire process takes only one minute."

Going with the flow

To create the device, the scientists designed the channels in the microfluidic chip in a specific configuration, with a cross-junction at the center of the chip and two T-junctions above and below.

When the scientists from Korea University first studied how different channel geometries and flow rates affected the cells, one specific scenario - a cross-junction where moderately flowing streams of fluid collided from opposite directions - stood out as peculiar.

"We saw a really interesting behavior exhibited by the cells, where they danced around in the center of the cross-channel," said Professor Chung.

By adding a fluorescent dye into one of the fluid streams, the researchers discovered that a spiral vortex had formed.

"We wanted to fully understand the fluid mechanics causing this effect, and the Micro/Bio/Nanofluids Unit led by Professor Amy Shen at OIST was already working on the problem," Professor Chung added.

The two groups of scientists therefore teamed up. Using the OIST supercomputer, the OIST unit developed and ran simulations of how the opposing fluid streams interacted at the cross-junction, at different rates of flow.

"At a low flow rate, we found that the two impinging streams of fluid parted symmetrically and flowed away from the cross-junction, as documented in the literature," said OIST scientist, Dr. Simon Haward. "However, as we increased the flow rate, we saw instabilities arise which caused multiple vortices to form, eventually merging into one large spiral vortex."

"Our simulation explained the unusual phenomena that Chung's group had observed and showed exactly how certain parameters, such as flow rate, affected vortex formation," added OIST postdoctoral researcher, Dr. Daniel Carlson.

The formation of the vortex is key to the rapid and effective delivery of nanomaterials into the cells. As each cell passes into the center of the cross-junction, the force of the spiral vortex deforms the cell, causing tiny nanoholes to arise in the membrane. The nanomaterials in the fluid are then able to move into the cell through these nanoholes. The cells are then swept away from the cross-junction and collide with the walls of the T-junctions, which causes further deformation of the cell membrane and increases the efficiency of delivery. After deformation, the nanoholes in the membrane reseal themselves and the membrane is repaired.

Boosting cell biology research

Using spiral hydroporation, the team at Korea University were able to deliver specific nanomaterials into cells, including RNA and gold nanoparticles.

More efficient and low-cost delivery of DNA, RNA and proteins such as CRISPR-Cas9 into large numbers of cells could assist research into topics including gene therapy, cancer immunotherapy and stem cells, Chung said.

Gold nanoparticles can also be used for delivering drugs, imaging molecules and organelles within cells, and for diagnosing disease.

"Overall, there are a vast array of applications for spiral hydroporation and interest in the chip has been very high," said Professor Chung. "Researchers need a more efficient, simple, rapid and low-cost means of intracellular delivery - our chip is a great new avenue for achieving that goal."

Okinawa Institute of Science and Technology (OIST) Graduate University

Related Nanomaterials Articles:

Water-free way to make MXenes could mean new uses for the promising nanomaterials
Ten years after producing the first sample of the now widely studied family of nanomaterials, called MXenes, Drexel University researchers have discovered a different way to make the atom-thin material that presents a number of new opportunities for using it.
Researchers develop technique to create nanomaterials which may help detect cancer earlier
For the first time, a team of scientists at the University of Central Florida has created functional nanomaterials with hollow interiors that can be used to create highly sensitive biosensors for early cancer detection.
Magnetic nanomaterials become an effective treatment against liver fibrosis
Fibrosis may affect different body organs. It develops as a reaction to long-time inflammation and is supposed to isolate the inflammation site from surrounding tissues.
More efficient risk assessment for nanomaterials
Nanotechnology is booming, but risk assessment for these tiny particles is a laborious process that presents significant challenges to the German Federal Institute for Risk Assessment (BfR).
New technology gives insight into how nanomaterials form and grow
A new form of electron microscopy allows researchers to examine nanoscale tubular materials while they are 'alive' and forming liquids -- a first in the field.
Nanomaterials give plants 'super' abilities (video)
Science-fiction writers have long envisioned human-machine hybrids that wield extraordinary powers.
Review of the recent advances of 2D nanomaterials in Lit-ion batteries
In a paper to be published in the forthcoming issue in NANO, researchers from the China University of Petroleum (East China) have summarized the recent advances in application of 2D nanomaterials on the electrode materials of lithium-ion batteries, owing to their compelling electrochemical and mechanical properties that make them good candidates as electrodes in lit-ion batteries for high capacity and long cycle life.
New paper provides design principles for disease-sensing nanomaterials
A newly published paper from researchers at the Advanced Science Research Center (ASRC) at The Graduate Center of The City University of New York, Brooklyn College, and Hunter College, outlines novel design guidance that could rapidly advance development of disease-sensing nanomaterials for use in new drug development.
'Imploding' 3D printed nanomaterials in a shrinking gel
By 3d printing nanomaterials inside an 'imploding' hydrogel and shrinking them down to ten times their former size, researchers demonstrate a new method of nanofabrication that overcomes many of the previous' limitations, a new study reports.
Pitt chemical engineers develop new theory to build improved nanomaterials
Researchers from the University of Pittsburgh's Swanson School of Engineering have developed a new theory to better predict how nanoclusters will behave when a given metal is introduced to their structure.
More Nanomaterials News and Nanomaterials Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at