Nav: Home

Researchers promote cancer cell growth in the near infrared region by using silica coated gold nano

March 11, 2020

In a report published in NANO, a group of researchers from the Republic of Korea have discovered a method to promote cancer cell growth using silica-coated gold nanorods. The cell growth by near infrared (NIR) exposure of Si-AuNRs nano heat islands revealed a higher growth rate of 36.13% than the normal incubator condition.

Gold nanoparticles (AuNPs) have been brought to the forefront of cancer research in recent years. They possess a number of favourable properties such as ease of synthesis and surface modification, strongly enhanced and tunable optical properties as well as excellent biocompatibility for clinic setting. Gold nanorods (AuNRs) are considered suitable materials for diverse biomedical applications in controlling cell behaviors.

The nano island system with well dispersed silica coated Au nanorods (Si-AuNRs) was used to demonstrate the enhanced cell growth of normal and cancer cells from the induced expressions of the heat shock proteins. Heat shock proteins could hinder the formation of unwanted intermolecular bond when combined with unconjugated protein.

The researchers believe that the growth of cancer cells in near infrared region using Si-AuNRs induced the activities of heat shock proteins, which could help the protein folding in cell growth and survival in comparison to the cells grown in the incubator only. Unlike external heating sources, such as infrared radiation, steamed heats, or water bath, the internalized nanomaterials for mediating heats were effective with minimal side effects.

"The cell growth with NIR exposure to Si-AuNRs nano heat islands could be an alternative way to grow cells in comparison to the conventional system, such as an incubator. Such cells can be used in diverse cellular applications in future", said lead investigator of study Dong Kee Yi.
-end-
This research was supported by the Korean National Research Foundation (NRF-2018R1A2B6007786).

Corresponding author for this work is Dong Kee Yi (vitalis@mju.ac.kr).

For more insight into the research described, readers are invited to access the paper on NANO.

IMAGE

Caption: The nano island system with well dispersed silica coated Au nanorods (Si-AuNRs) was used to demonstrate the enhanced the cell growth of normal and cancer cells from the induced expressions of the heat shock proteins (HSP). The over expressions of HSP could help in protein folding in cell proliferations and growths of both the normal and cancer cells. The cell growth enhancing technology could be expanded in diverse applications in cell culture systems.

NANO is an international peer-reviewed monthly journal for nanoscience and nanotechnology that presents forefront fundamental research and new emerging topics. It features timely scientific reports of new results and technical breakthroughs and publishes interesting review articles about recent hot issues.

About World Scientific Publishing Co.

World Scientific Publishing is a leading independent publisher of books and journals for the scholarly, research, professional and educational communities. The company publishes about 600 books annually and about 140 journals in various fields. World Scientific collaborates with prestigious organizations like the Nobel Foundation and US National Academies Press to bring high quality academic and professional content to researchers and academics worldwide. To find out more about World Scientific, please visit http://www.worldscientific.com.

For more information, contact Tay Yu Shan at ystay@wspc.com.

World Scientific

Related Cancer Cells Articles:

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.
Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.
First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.
Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.
Plant-derived SVC112 hits cancer stem cells, leaves healthy cells alone
Study shows Colorado drug SVC112 stops production of proteins that cancer stem cells need to survive and grow.
Changes in the metabolism of normal cells promotes the metastasis of ovarian cancer cells
A systematic examination of the tumor and the tissue surrounding it -- particularly normal cells in that tissue, called fibroblasts -- has revealed a new treatment target that could potentially prevent the rapid dissemination and poor prognosis associated with high-grade serous carcinoma (HGSC), a tumor type that primarily originates in the fallopian tubes or ovaries and spreads throughout the abdominal cavity.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
White blood cells related to allergies may also be harnessed to destroy cancer cells
A new Tel Aviv University study finds that white blood cells which are responsible for chronic asthma and modern allergies may be used to eliminate malignant colon cancer cells.
Conversion of breast cancer cells into fat cells impedes the formation of metastases
An innovative combination therapy can force malignant breast cancer cells to turn into fat cells.
Breast cancer cells in mice tricked into turning into fat cells
As cancer cells respond to cues in their microenvironment, they can enter a highly plastic state in which they are susceptible to transdifferentiation into a different type of cell.
More Cancer Cells News and Cancer Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.