Microbes far beneath the seafloor rely on recycling to survive

March 11, 2020

Scientists from Woods Hole Oceanographic Institution reveal how microorganisms could survive in rocks nestled thousands of feet beneath the ocean floor in the lower oceanic crust, in a study published on March 11 in Nature. The first analysis of messenger RNA -- genetic material containing instructions for making different proteins -- from this remote region of Earth, coupled with measurements of enzyme activities, microscopy, cultures, and biomarker analyses provides evidence of a low biomass, but diverse community of microbes that includes heterotrophs that obtain their carbon from other living (or dead) organisms.

"Organisms eking out an existence far beneath the seafloor live in a hostile environment," says Dr. Paraskevi (Vivian) Mara, a WHOI biochemist and one of the lead authors of the paper. Scarce resources find their way into the seabed through seawater and subsurface fluids that circulate through fractures in the rock and carry inorganic and organic compounds.

To see what kinds of microbes live at these extremes and what they do to survive, researchers collected rock samples from the lower oceanic crust over three months aboard the International Ocean Discovery Program Expedition 360. The research vessel traveled to an underwater ridge called Atlantis Bank that cuts across the Southern Indian Ocean. There, tectonic activity exposes the lower oceanic crust at the seafloor, "providing convenient access to an otherwise largely inaccessible realm," write the authors.

Researchers combed the rocks for genetic material and other organic molecules, performed cell counts, and cultured samples in the lab to aid in their search for life. "We applied a completely new cocktail of methods to really try to explore these precious samples as intensively as we could," says Dr. Virginia Edgcomb, a microbiologist at WHOI, the lead PI of the project, and a co-author of the paper. "All together, the data start to paint a story."

By isolating messenger RNA and analyzing the expression of genes -- the instructions for different metabolic processes -- researchers showed evidence that microorganisms far beneath the ocean express genes for a diverse array. Some microbes appeared to have the ability to store carbon in their cells, so they could stockpile for times of shortage. Others had indications they could process nitrogen and sulfur to generate energy, produce Vitamin E and B12, recycle amino acids, and pluck out carbon from hard-to-breakdown compounds called polyaromatic hydrocarbons. "They seem very frugal," says Edgcomb.

This rare view of life in the far reaches of the earth extends our view of carbon cycling beneath the seafloor, Edgcomb says. "If you look at the volume of the deep biosphere, including the lower oceanic crust, even at a very slow metabolic rate, it could equate to significant amounts of carbon."
-end-
This work was supported by the National Science Foundation.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment. For more information, please visit http://www.whoi.edu.

KEY TAKEAWAYS

Woods Hole Oceanographic Institution

Related Microbes Articles from Brightsurf:

A new look at deep-sea microbes
Microbes found deeper in the ocean are believed to have slow population turnover rates and low amounts of available energy.

Microbes might manage your cholesterol
Researchers discover a link between human blood cholesterol levels and a gene in the microbiome that could one day help people manage their cholesterol through diet, probiotics, or entirely new types of treatment.

Can your gut microbes tell you how old you really are?
Harvard longevity researchers in collaboration with Insilico Medicine develop the first AI-powered microbiomic aging clock

What can be learned from the microbes on a turtle's shell?
Research published in the journal Microbiology has found that a unique type of algae, usually only seen on the shells of turtles, affects the surrounding microbial communities.

Life, liberty -- and access to microbes?
Poverty increases the risk for numerous diseases by limiting people's access to healthy food, environments and stress-free conditions.

Rye is healthy, thanks to an interplay of microbes
Eating rye comes with a variety of health benefits. A new study from the University of Eastern Finland now shows that both lactic acid bacteria and gut bacteria contribute to the health benefits of rye.

Gut microbes may affect the course of ALS
Researchers isolated a molecule that may be under-produced in the guts of patients.

Gut microbes associated with temperament traits in children
Scientists in the FinnBrain research project of the University of Turku discovered that the gut microbes of a 2.5-month-old infant are associated with the temperament traits manifested at six months of age.

Gut microbes eat our medication
Researchers have discovered one of the first concrete examples of how the microbiome can interfere with a drug's intended path through the body.

Microbes can grow on nitric oxide
Nitric oxide (NO) is a central molecule of the global nitrogen cycle.

Read More: Microbes News and Microbes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.