Nav: Home

'Zombie' brain cells develop into working neurons

March 11, 2020

Preventing the death of neurons during brain growth means these 'zombie' cells can develop into functioning neurons, according to research in fruit flies from the Crick, the University of Lausanne (UNIL) and the Max Planck Institute for Chemical Ecology.

During brain development, a large number of neurons destroy themselves as part of an essential regulatory mechanism that removes excess cells. In certain areas of the human brain, this cellular "suicide", which is called apoptosis, affects about 50% of neurons.

This research, published in Science Advances and conducted in fruit flies (Drosophila melanogaster), found that by stopping the death of these cells they later developed new networks of neurons, with roles and properties that are not identical to those of existing neurons.

The researchers genetically inhibited the last stage of apoptosis in neurons of the fly olfactory system. They found that the rescued 'zombie' cells, which would have otherwise been destroyed, developed into functioning olfactory neurons that were able to detect smells. However, the 'zombie' neurons expressed different olfactory receptors than their standard counterparts. For example, some of the 'zombie' neurons found in an olfactory organ called the maxillary palp, had receptors to detect carbon dioxide, a cue used by insects to sense the presence of animals and humans, as these exhale carbon dioxide when breathing. These extra neurons gave the flies similar characteristics to mosquitos (Anopheles gambiae), which, unlike flies, also have carbon dioxide-sensing olfactory neurons in their maxillary palps. The two species have a common ancestor that lived around 250 million years ago.

"When the neurons that normally die were protected from apoptosis they developed into 'zombie' neurons that have similar characteristics as certain neurons in mosquitos. Apoptosis therefore is one factor responsible for how mosquitos and fruit flies have adapted over time to their different environments," says Lucia Prieto-Godino, co-first author and group leader of the Crick's Neural Circuits and Evolution Laboratory.

"From an evolutionary point of view, our results suggest that changes in patterns of cell death in the nervous system could allow a species to adapt to new pressures from its environment, by enabling the evolution of new populations of neurons with novel structural and functional properties," said Richard Benton, senior author and group leader at the Center for Integrative Genomics at UNIL.

While the researchers did not study in detail the behaviour of flies with more olfactory neurons, this increase theoretically allows them to perceive odours with higher sensitivity. This could play a role in helping them to detect a partner, food or danger and thus represent an advantage compared to other individuals.
-end-


The Francis Crick Institute

Related Neurons Articles:

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.