Nav: Home

Bristol pioneers use of VR for designing new drugs

March 11, 2020

Researchers at the University of Bristol are pioneering the use of virtual reality (VR) as a tool to design the next generation of drug treatments.

The findings, published in the journal PLOS ONE describe how researchers used VR to understand how common medications work on a molecular level.

Many drugs are small molecules, and discovering new drugs involves finding molecules that bind to biological targets like proteins.

In the study, users were able to use VR to 'step inside' proteins and manipulate them, and the drugs binding to them, in atomic detail, using interactive molecular dynamics simulations in VR (iMD-VR).

Using this iMD-VR approach, researchers 'docked' drug molecules into proteins and were able to predict accurately how the drugs bind. Among the systems studied were drugs for flu and HIV.

Professor Adrian Mulholland, from the University of Bristol's Centre for Computational Chemistry, and co-lead of the work, said: "Many drugs work by binding to proteins and stopping them working. For example, by binding to a particular virus protein, a drug can stop the virus from reproducing.

"To bind well, a small molecule drug needs to fit snugly in the protein. An important part of drug discovery is finding small molecules that bind tightly to specific proteins, and understanding what makes them bind tightly, which helps to design better drugs.

"To design new therapies, researchers need to understand how drug molecules fit into their biological targets. To do this, we use VR to represent them as fully three-dimensional objects. Users can then fit a drug within the 'keyhole' of a protein binding site to discover how they fit together."

In the study, users were set the task of binding drugs to protein targets such as influenza neuraminidase and HIV protease.

Tests showed that users were able to predict correctly how the drugs bind to their protein targets. By pulling the drug into the protein, they could build structures that are very similar to the structures of the drug complexes found from experiments.

Even non-experts were able to dock drugs into the proteins effectively. This shows that interactive VR can be used to predict accurately how new potential drugs bind to their targets.

The study shows how VR can be used effectively in structure-based drug design, even by non-experts. It uses readily available VR equipment and an open source software framework, so can be applied by anyone.

Professor Mulholland added: "An important aspect of the work is that the drugs, and their protein targets, are fully flexible: we model their structural changes and dynamics, and users can manipulate them interactively to find how drugs interact with their biological targets. This is a really exciting and powerful way to model drug binding. We have shown in this work that it gives accurate results. These tools will be useful in the design and development of new drugs."

Dr David Glowacki, Royal Society Senior Research Fellow in Bristol's School of Chemistry and Department of Computer Science, said: "Our results show that it is possible to unbind and rebind drugs from protein targets on a simulation timescale significantly shorter than the timescale of similar events observed using non-interactive molecular dynamics engines.

"It is also important to note that the full unbinding and rebinding events generated using iMD-VR were achieved by the users in less than five minutes of real time.

"Where non-expert users had trace atoms showing them the correct pose, all participants were able to establish a docking pose which was close enough to the starting structure to be scientifically considered redocked.

"Where no trace atoms were present, binding poses understandably had more variation, but users were still able to get within the same range of the accepted bound position for all three systems. These results were achieved within a single hour-long training session with each participant, demonstrating the usability of this VR framework."
-end-
This research was supported by funding from EPSRC and the Royal Society.

University of Bristol

Related Proteins Articles:

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.
Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.
New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.
Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.