Permanent magnets stronger than those on refrigerator could be a solution for delivering fusion energy

March 11, 2020

Permanent magnets akin to those used on refrigerators could speed the development of fusion energy - the same energy produced by the sun and stars.

In principle, such magnets can greatly simplify the design and production of twisty fusion facilities called stellarators, according to scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and the Max Planck Institute for Plasma Physics in Greifswald, Germany. PPPL founder Lyman Spitzer Jr. invented the stellarator in the early 1950s.

Most stellarators use a set of complex twisted coils that spiral like stripes on a candy cane to produce magnetic fields that shape and control the plasma that fuels fusion reactions. Refrigerator-like permanent magnets could produce the hard part of these essential fields, the researchers say, allowing simple, non-twisted coils to produce the remaining part in place of the complex coils.

Twisted coils most expensive

"The twisted coils are the most expensive and complicated part of the stellarator and have to be manufactured to very great precision in a very complicated form," said physicist Per Helander, head of the Stellarator Theory Division at Max Planck and lead author of a paper describing the research (link is external) in Physical Review Letters (PRL). "We are trying to ease the requirement on the coils by using permanent magnets."

Simplifying stellarators, which run without the risk of damaging disruptions that more widely used tokamak fusion devices face, can hold great appeal. "I am extremely excited about the use of permanent magnets to shape the plasma in stellarators," said Steve Cowley, PPPL director and a coauthor of the paper. "It leads to much simpler engineering design."

Fusion, the power that drives the sun and stars, combines light elements in the form of plasma -- the hot, charged state of matter composed of free electrons and atomic nuclei -- that generates massive amounts of energy. Scientists around the world are using tokamaks, stellarators, and other facilities in the effort to create and control fusion on Earth for a virtually inexhaustible supply of safe and clean power to generate electricity.

The novel idea for permanent magnets is an offshoot of a science fair project that Jonathan Zarnstorff, the son of PPPL Chief Scientist Michael Zarnstorff, a coauthor of the paper, put together in junior high school. Jonathan wanted to build a rail gun, a device that usually uses high-voltage current to generate a magnetic field that can fire a projectile. But the high-voltage current would be dangerous to use in a classroom.

Father and son solution

The solution that father and son arrived at was to use neodymium, or rare earth, permanent magnets to safely produce the magnetic field. Rare earth magnets have surprising and useful properties. They generate quite powerful fields for the magnets' small size, and these are "hard" fields that are almost unaffected by other fields nearby. These magnets could thus provide what physicists call the "poloidal" part of a spiraling stellarator field, while simple round coils could provide the "toroidal" part that makes up the rest of the field. "I'd thought about that over the years but had no time to develop the idea," Zarnstorff said. The notion finally came to fruition during discussions with Cowley and physicist Cary Forest of the University of Wisconsin-Madison.

Permanent magnets are always "on" in sharp contrast to the standard electromagnetic coils that stellarators and tokamaks use. Such coils create magnetic fields when an electric current runs through them -- current that requires power supplies that permanent magnets do not need. Other advantages of the use of permanent magnets to simplify stellarator coils include:Permanent magnets have disadvantages, too. "You can't turn them off," Helander said, which means they can pull in anything they can attract within range. They also produce limited maximum field strength, he said. Nonetheless, such magnets "can be great for creating experiments on the way to a reactor," he added, "and stronger permanent magnets may become available."

New set of tools

For Zarnstorff, permanent magnets are "a strategy and a new set of tools, and we have to figure out how to use them." He now plans several uses. First will come construction of a table-top stellarator with permanent magnets installed. Further ahead he hopes PPPL could produce the world's first simple optimized stellarator, one designed to meet specific performance goals. That facility could be upgraded to increase its field strength, in preparation for continued development of the simplified machine. Eventually, a stellarator including permanent magnets might produce energy to generate electricity for all humankind.
Coauthors of the PRL paper include physicist Michael Drevlak of the Max Planck Stellarator Theory Division, who carried out the numerical optimization. Support for this work comes from the DOE Office of Science (FES), the Simons Foundation and the Max Planck Society.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit (link is external).

DOE/Princeton Plasma Physics Laboratory

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to