Nav: Home

Joint efforts towards treating paralysis

March 12, 2017

Scientists Stéphanie Lacour and Grégoire Courtine of Ecole polytechnique fédérale de Lausanne (EPFL) in Switzerland are paving the way for new, intelligent neuroprosthetics that may one day assist people with neurological dysfunction in everyday tasks. Neuroprosthetic devices are electronics that communicate with the nervous system, and the scientists are working together to translate their findings from the lab to the clinic.

Clinical trials currently underway

In the lab, Grégoire Courtine recently showed that paralyzed primates could walk again with the assistance of a smart neuroprosthetic system he calls the "brain-spine interface". This wireless -- fully wearable -- neuroprosthetic interface essentially decodes brain signals about walking and stimulates the spinal cord to contract the correct group of leg muscles to enact the intended walking movements -- without any therapeutic training. He also showed in 2012 that paralyzed rats could recover after spinal cord injury after a few weeks of rehabilitation, combining electro-chemical stimulation and physiotherapy that uses a robotic harness.

At this year's edition of South by South West (SXSW), Courtine describes this research in detail and his roadmap to transforming this technology into therapy for people suffering from paralysis. In particular, clinical trials are currently underway to test the feasibility of the spine-part of the brain-spine interface on patients with partial paralysis, in a collaboration with neurosurgeon Jocelyne Bloch at the Lausanne University Hospital (CHUV).

"This is the culmination of years of work," says Courtine about the current clinical trials. "The results are so far promising, but the final outcomes must be carefully analyzed and no conclusions can be made yet."

His approach to paralysis research is highly unconventional. Instead of focusing his energy on generating neural regrowth across spinal cord lesions that lead to paralysis, his approach relies on the plasticity of the nervous system, this incredible ability of the nervous system to adapt to damage. Based on his research, he is driven by the conviction that his neurorehabilitation protocol (electro-chemical stimulation and physiotherapy) drives the nervous system to reestablish connections across the lesion.

Elastic electrodes interfacing the body

At the interface of these innovative neuroprosthetic protocols are implantable electrodes that can read neural activity, stimulate nerves, and bypass nerve injury to reactivate biological function. Electrodes are surgically implanted into or on top of target nerve fibres, ready to sense electrical signals from neural activity or to deliver electric current that mimics the language of the nervous system.

There is a caveat. Conventional electrodes are rigid. Implanted in the human body, they aggravate surrounding tissue, leading to inflammation and tissue build-up that precipitate electrode dysfunction and necessite surgical removal.

But Lacour may have a solution. At SXSW, she presents flexible and stretchable electrodes that conform to the dynamics of the body in the hopes that these new electrodes will provoke less inflammation in the body, leading to longer-lasting -- and more wearable -- interfaces.

Her e-Dura implant is designed specifically for implantation on the surface of the brain or spinal cord. The small device closely imitates the mechanical properties of living tissue, and can simultaneously deliver electric impulses and pharmacological substances. The risks of rejection and/or damage to the spinal cord have been drastically reduced. Results so far in rodents have been encouraging.

"These electrodes are not yet clinically available," warns Lacour. "Nevertheless, what we are learning can already be applied in a clinical context with my colleague Grégoire."
-end-


Ecole Polytechnique Fédérale de Lausanne

Related Spinal Cord Articles:

Scientists find mechanism behind precise spinal cord development
Scientists have uncovered how nerve cells in the spinal cord are organized in precise patterns during embryo development -- a finding that could give insight into regenerative medicine.
Discovery offers new hope to repair spinal cord injuries
Scientists at the Gladstone Institutes created a special type of neuron from human stem cells that could potentially repair spinal cord injuries.
Generating improvement in spinal cord injuries
Results from an ongoing treatment for spinal cord injury research study were announced on Jan.
€1.3m study could pave way for therapies to repair spinal cord
Brain scientists are using tropical fish to investigate how the spinal cord can be coaxed to repair itself after injury.
A secret ingredient to help heal spinal cord injuries?
Researchers have identified a protein in zebrafish that facilitates healing of major spinal cord injuries.
A review on the therapeutic antibodies for spinal cord injury
Spinal cord injury (SCI) causes long-lasting damage in the spinal cord that leads to paraparesis, paraplegia, quadriplegia and other lifetime disabilities.
Improving cell transplantation after spinal cord injury: When, where and how?
Spinal cord injuries are mostly caused by trauma, often incurred in road traffic or sporting incidents, often with devastating and irreversible consequences.
Protective effect of genetically modified cord blood on spinal cord injury in rats
Researchers of Kazan Federal University genetically modified cord blood which managed to increase tissue sparing and numbers of regenerated axons, reduce glial scar formation and promote behavioral recovery when transplanted immediately after a rat contusion spinal cord injury.
New role identified for scars at the site of injured spinal cord
For decades, it was thought that scar-forming cells called astrocytes were responsible for blocking neuronal regrowth across the level of spinal cord injury, but recent findings challenge this idea.
Aging diminishes spinal cord regeneration after injury
Researchers at University of California, San Diego School of Medicine and University of British Columbia (UBC) have determined that, in mice, age diminishes ability to regenerate axons, the brain's communication wires in the spinal cord.

Related Spinal Cord Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".