Nav: Home

New research shows why babies need to move in the womb

March 12, 2018

Scientists have just discovered why babies need to move in the womb to develop strong bones and joints. It turns out there are some key molecular interactions that are stimulated by movement and which guide the cells and tissues of the embryo to build a functionally robust yet malleable skeleton. If an embryo doesn't move, a vital signal may be lost or an inappropriate one delivered in error, which can lead to the development of brittle bones or abnormal joints.

Cells in the early embryo receive biological signals that direct them to contribute to different types of tissue, and in different places. For example, our bones need to be made of strong and resilient material to protect and support our bodies, whereas our articulating joints (e.g. our knees and elbows) need to be able to move smoothly. As a result, at joints, bones need to be covered in smooth, lubricated cartilage. Cells in the early embryo are thus directed to make a decision to either form bone or cartilage, depending on where they are.

Scientists understand many of the signals that direct the cells to build bone, but, know a lot less about how the cartilage at the joint is directed. At the moment clinical treatment for joint degeneration is joint replacement, which improves the quality of life for many people but involves invasive surgery and is not a permanent solution. If we understood better how the embryo forms articular cartilage at the joint, we would be in a better position to come up with ways of regenerating cartilage from stem cells to provide improved treatments for joint injuries and diseases.

Professor in Zoology at Trinity College Dublin, Paula Murphy, co-led the research that has just been published in leading international journal Development. She said: "The relative lack of understanding around how cartilage was directed presented an unfortunate knowledge gap because there are many painful, debilitating diseases that affect joints -- like osteoarthritis -- and because we also often injure our joints, which leads to them losing this protective cartilage cover."

"Our new findings show that in the absence of embryonic movement the cells that should form articular cartilage receive incorrect molecular signals, where one type of signal is lost while another inappropriate signal is activated in its place. In short, the cells receive the signal that says 'make bone' when they should receive the signal that says 'make cartilage'."

Prior to this discovery, using chick and mouse embryos where movement could be altered, the scientists had previously shown that when movement is reduced the articular cells at the joint do not form properly, and that in extreme cases the bones can fuse at the joint, but they didn't know why. Now, they have isolated the mechanism underlying healthy development, which has provided new insights into what type of embryo movement is important and the specific signals that are needed to make a healthy joint.

The next steps will see the scientists take what they have learned thus far and attempt to activate the correct signals to make stable cartilage that is capable of contributing to a healthy joint. This will involve exposing cells to different combinations of the all-important biological and biophysical signals to find the perfect recipe. Their continued work will also build knowledge around what exact movements are needed, which may help diagnose problems earlier and suggest how clinicians may compensate for natural movements if required. It could, for example, inform physiotherapeutic regimes that would alleviate resulting problems.
-end-
The work is the result of a collaboration between Professor Murphy's research group in the School of Natural Sciences at Trinity, which focuses on the importance of embryo movement, and a group in the Indian Institute of Technology, Kanpur, led by Amitabha Bandyopadhyay. The collaboration was initiated with seed funding from Trinity's Faculty of Engineering, Mathematics and Science India Scheme, and the Trinity SFI ISCA India Programme. It was also later supported by a grant from the Indian Ministry.

The research article Precise spatial restriction of BMP signaling in developing joints is perturbed upon loss of embryo movement can be read at:

Trinity College Dublin

Related Cartilage Articles:

Artificial cartilage under tension as strong as natural material
Biomedical engineers at the University of California, Davis, have created a lab-grown tissue similar to natural cartilage by giving it a bit of a stretch.
Success in the 3-D bioprinting of cartilage
A team of researchers at Sahlgrenska Academy has managed to generate cartilage tissue by printing stem cells using a 3-D-bioprinter.
3-D bioprinted human cartilage cells can be implanted
Swedish researchers at Chalmers University of Technology and Sahlgrenska Academy have successfully induced human cartilage cells to live and grow in an animal model, using 3-D bioprinting.
Better cartilage map could help researchers improve engineered joint repair
Cartilage serves as a shock absorber for the human body, lubricating joints and helping them move smoothly.
Stem cells from jaw bone help repair damaged cartilage
Researchers from Columbia College of Dental Medicine have identified stem cells in the jaw bone that can make new cartilage and repair damaged joints.
High fat diet improves cartilage repair in mice
Obesity is a well-known risk factor for osteoarthritis, but its effects on cartilage repair are unknown.
Stem cells engineered to grow cartilage, fight inflammation
With a goal of treating worn, arthritic hips without extensive surgery to replace them, scientists at Washington University School of Medicine in St.
Radiocarbon dating suggests joint cartilage can't renew
Using radiocarbon dating as a forensic tool, researchers have found that human cartilage rarely renews in adulthood, suggesting that joint diseases may be harder to treat than previously thought.
3-D printing produces cartilage from strands of bioink
Strands of cow cartilage substitute for ink in a 3-D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers.
CWRU leads effort to replace prostheses with engineered cartilage
Case Western Reserve University will open a new center designed to develop evaluation technology and set standards for testing and improving engineered cartilage that could one day replace a variety of prosthetic devices.

Related Cartilage Reading:

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Person You Become
Over the course of our lives, we shed parts of our old selves, embrace new ones, and redefine who we are. This hour, TED speakers explore ideas about the experiences that shape the person we become. Guests include aerobatics pilot and public speaker Janine Shepherd, writers Roxane Gay and Taiye Selasi, activist Jackson Bird, and fashion executive Kaustav Dey.
Now Playing: Science for the People

#479 Garden of Marvels (Rebroadcast)
This week we're learning about botany and the colorful science of gardening. Author Ruth Kassinger joins us to discuss her book "A Garden of Marvels: How We Discovered that Flowers Have Sex, Leaves Eat Air, and Other Secrets of the Way Plants Work." And we'll speak to NASA researcher Gioia Massa about her work to solve the technical challenges of gardening in space.