Holography approach improves heads up displays for planes and cars

March 12, 2018

WASHINGTON -- Heads-up displays are transparent devices used in airplanes and cars to provide information such as critical flight data or driving directions on the windshield. An innovative holography-based approach could soon make these heads-up displays much easier to see with a large eye box.

Current heads-up displays have a small eye box, meaning that the displayed information partially or wholly disappears if users shift their gaze too much. "A heads-up display using our new technology installed in a car would allow a driver to see the displayed information even if he or she moved around or was shorter or taller than average," said research team leader Pierre-Alexandre Blanche of the University of Arizona, USA.

In The Optical Society journal Applied Optics, the researchers demonstrate a functional prototype heads-up display that uses holographic optical elements to achieve an eye box substantially larger than what is available without the holographic element. The researchers say that their approach could be turned into a commercial product in as little as a few years and might also be used to increase the size of the displayed area.

"Increasing the size of either the eye box or the displayed image in a traditional heads-up display requires increasing the size of the projection optics, relay lenses and all the associated optics, which takes up too much space in the dashboard," said first author Colton Bigler, a doctoral student in Blanche's laboratory. "Instead of relying on conventional optics, we use holography to create a thin optical element that can be ultimately applied onto a windshield directly."

Using holograms to make optics

The same laser light interactions used to create the holograms that protect credit cards from forgery can also be used to fabricate optical elements such as lenses and filters in light-sensitive materials. These holographic elements are not only smaller than traditional optical components but can be mass produced because they are easily fabricated.

For the new head-up display, holographic optical elements redirect light from a small image into a piece of glass, where it is confined until it reaches another holographic optical element that extracts the light. The extraction hologram presents a viewable image with a larger eye box size than the original image.

"We are working with Honeywell to develop these displays for aircraft, but they could just as easily be used in cars," Blanche said. "Our approach requires no expensive equipment and no new materials need to be developed. Furthermore, the display can be completely integrated into a standard car windshield."

After performing optical simulations, the researchers created a laboratory version of their head-up display that created an eye box seven times larger than the original image. They then made a working prototype that displayed flight information on a piece of glass that can be part of the transparent enclosure that covers cockpits. Using the prototype, they were able to almost double the eye box of the original image and showed that the image doesn't disappear until the user looks beyond the edge of the hologram. They also demonstrated that the presented image appears in the far field, meaning that observers don't need to change their focus to see the displayed information.

"It's possible to create a much larger eye box by increasing the size of the injection and extraction holographic elements, the only limitation is the size of the glass displaying the image," Blanche continued. "Our work is a good example of how holography can be used to solve many types of optical problems for various applications. A similar approach might also be useful for augmented reality headsets, which also merge computer-generated images with views of the outside world but with a display that is close to the eye."

Although the researchers demonstrated their approach using one color, they say that it could be expanded to create full-color heads-up displays. They are also working to use the same approach to create a much larger image that is extracted by the holographic element to increase the size, or field of view, of the display.
-end-
Paper: C. M. Bigler, P.-A. Blanche, K. Sarma, "Holographic Waveguide Heads-Up Display for Longitudinal Image Magnification and Pupil Expansion," Applied Optics, Volume 57, Issue 9, 2007-2013, (2018). DOI: 10.1364/AO.57.002007

About Applied Optics

Applied Optics publishes in-depth peer-reviewed content about applications-centered research in optics. These articles cover research in optical technology, photonics, lasers, information processing, sensing and environmental optics. The editor-in-chief for Applied Optics is Ronald Driggers from the University of Central Florida. For more information, visit: OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contacts: mediarelations@osa.org

The Optical Society

Related Eye Articles from Brightsurf:

Empathy may be in the eye of the beholder
Do we always want people to show empathy? Not so, said researchers from the University of California, Davis.

Seeing the eye like never before
In a big step for ophthalmology, scientists created a method to view the inner workings of the eye and its diseases at the cellular level.

A smart eye mask that tracks muscle movements to tell what 'caught your eye'
Integrating first-of-its-kind washable hydrogel electrodes with a pulse sensor, researchers from the University of Massachusetts Amherst have developed smart eyewear to track eye movement and cardiac data for physiological and psychological studies.

Vision scientists discover why people literally don't see eye to eye
We humans may not always see eye to eye on politics, religion, sports and other matters of debate.

More than meets the eye
New findings reframe the traditional view of face blindness as a disorder arising strictly from deficits in visual perception of facial features.

An ethical eye on AI
Researchers from the University of Warwick, Imperial College London, EPFL (Lausanne) and Sciteb Ltd have found a mathematical means of helping regulators and business manage and police Artificial Intelligence systems' biases towards making unethical, and potentially very costly and damaging commercial choices - an ethical eye on AI.

Eye blinking on-a-chip
Researchers at Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS) have developed a device that moves fluids over corneal cells similarly to the movement of tears over a blinking eye.

Guardian angel of the eye
The lens of the human eye comprises a highly concentrated protein solution, which lends the lens its great refractive power.

Antibody-based eye drops show promise for treating dry eye disease
Researchers have identified the presence of a specific type of antibody, called anti-citrullinated protein autoantibodies, or ACPAs, in human tear fluid.

Left eye? Right eye? American robins have preference when looking at decoy eggs
Just as humans are usually left- or right-handed, other species sometimes prefer one appendage, or eye, over the other.

Read More: Eye News and Eye Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.