Nav: Home

Mixed-cation perovskite solar cells in space

March 12, 2019

With the continuous improvement of efficiency and stability, perovskite solar cells are gradually approaching practical applications. PSCs may show the special application in space where oxygen and moisture (two major stressors for the stability) barely exist. Publishing in Sci. China-Phys. Mech. Astron., a group of researchers at Peking University in China, led by Dr. Rui Zhu and Prof. Qihuang Gong in collaboration with Prof. Guoning Xu from Academy of Opto-Electronics, CAS, and Prof. Wei Huang from Northwestern Polytechnical University, have reported the stability study of PSCs in near space.

The metal halide perovskite materials demonstrate outstanding performance in photovoltaics because of their excellent optoelectronic properties. PSCs exhibiting outstanding efficiency, high power-per-weight, and excellent radiation resistance are considered to be promising for developing the new-generation energy technology for space application. However, the extreme space environment would impose a considerable challenge to the stability of devices, while the application of PSCs in space has rarely been researched.

Researchers demonstrated the attempt for the stability study of large-area perovskite solar cells (active area of 1.00 cm2) in near space. The devices were fixed on the high-altitude balloon rising from ground to near space at an altitude of 35 km in Inner Mongolian Area, China. The near space atmosphere at 35 km contains trace amount of both moisture and ozone, resulting in AM0 solar spectrum with the light intensity of 136.7 mW/cm2. This atmosphere also contains several high-energy particles and radiation (such as neutrons, electrons, and gamma rays), originating from the galactic cosmic rays and solar flares. The devices were fabricated as TiO2 mesoporous structure based on two commonly reported mixed-cation perovskites, FA0.9Cs0.1PbI3, and FA0.81MA0.10Cs0.04PbI2.55Br0.40. Moreover, different kinds of perovskite photoactive absorbers with and without UV filter were investigated. As a result, the device based on FA0.81MA0.10Cs0.04PbI2.55Br0.40 retained 95.19% of its initial power conversion efficiency during the test under AM0 illumination.

Researchers anticipate that this study will play very crucial roles in the future stability research of perovskite solar cells. This work also opens the route for perovskite solar cells in future space application. Dr. Rui Zhu and his colleagues are continuing to push the practical application of perovskite solar cells in space.
This research was funded by the 973 Program of China (Grant No. 2015CB932203), the National Natural Science Foundation of China (Grant Nos. 61722501, and 61377025), the Beijing Natural Science Foundation (Grant No. 4164106), the Scientific Experimental System in Near Space of Chinese Academy of Sciences (Grant No. XDA17000000), and the General Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2017M620519).

See the article:

Y. G. Tu, G. N. Xu, X. Y. Yang, Y. F. Zhang, Z. J. Li, R. Su, D. Y. Luo, W. Q. Yang, Y. Miao, R. Cai, L. H. Jiang, X. W. Du, Y. C. Yang, Q. S. Liu, Y. Gao, S. Zhao, W. Huang, Q. H. Gong, and R. Zhu, Mixed-cation perovskite solar cells in space, Sci. China-Phys. Mech. Astron. 62, 974221 (2019),

Science China Press

Related Radiation Articles:

Cloudy with a chance of radiation: NASA studies simulated radiation
NASA's Human Research Program (HRP) is simulating space radiation on Earth following upgrades to the NASA Space Radiation Laboratory (NSRL) at the US Department of Energy's Brookhaven National Laboratory.
Visualizing nuclear radiation
Extraordinary decontamination efforts are underway in areas affected by the 2011 nuclear accidents in Japan.
Measuring radiation damage on the fly
Researchers at MIT and elsewhere have found a new way to measure radiation damage in materials, quickly, cheaply and continuously, using transient grating spectroscopy.
Radiation that knocks electrons out and down, one after another
Researchers at Japan's Tohoku University are investigating novel ways by which electrons are knocked out of matter.
Novel advancements in radiation tolerance of HEMTs
When it comes to putting technology in space, size and mass are prime considerations.
Radiation-guided nanoparticles zero in on metastatic cancer
Zap a tumor with radiation to trigger expression of a molecule, then attack that molecule with a drug-loaded nanoparticle.
Graphene is both transparent and opaque to radiation
A microchip that filters out unwanted radiation with the help of graphene has been developed by scientists from the EPFL and tested by researchers of the University of Geneva (UNIGE).
Radiation causes blindness in wild animals in Chernobyl
This year marks 30 years since the Chernobyl nuclear accident.
No proof that radiation from X rays and CT scans causes cancer
The widespread belief that radiation from X rays, CT scans and other medical imaging can cause cancer is based on an unproven, decades-old theoretical model, according to a study published in the American Journal of Clinical Oncology.
Some radiation okay for expectant mother and fetus
During pregnancy, approximately 5 to 8 percent of women sustain traumatic injuries, including fractures and muscle tears.

Related Radiation Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".