Nav: Home

Researchers improve description of defective oxides with first principles calculation

March 12, 2019

Some perovskite oxides, for example, have shown a wide spectrum of technologically relevant functional properties such as ferroelectricity and magnetism that can be tuned via strain. Strain, however, also couples with the defect chemistry to determine the material's properties.

SrMnO3 (SMO) is a particularly interesting example for examining the functionality resulting from a complex interplay of strain, magnetic order, polar distortions, and oxygen vacancies that are ubiquitous defects in these materials. In particular, theory has predicted SMO thin films to turn from antiferromagnetic to ferromagnetic with increasing oxygen deficiency, which is supported by recent experimental studies.

These previous predictions were however based on density functional theory (DFT) calculations that incorporated a correction U based on the electronic and magnetic properties of stoichiometric manganites. While the inclusion of U--meant to correct self-interaction of electrons in complex oxides--is necessary in such materials, the specific choice of U based on stoichiometric material properties could lead to potential shortcomings in the description of defective SMO--manganese ions around the defect have a different coordination environment.

Depending on the defect charge state, an added issue is related to the description of multiple oxidation states present in defective SMO. The formation of oxygen vacancies is generally charge-compensated by a reduction of the oxidation state (OS) of manganese ions adjacent to the vacancy, which may thus not be properly described by the same U.

This is why University of Bern postdoc Chiara Ricca and colleagues decided it was critical to take into account local structural and chemical effects for each transition metal site in the oxide when aiming for an accurate description of defective SMO. In collaboration with a team at Nicola Marzari's THEOS lab/, which recently developed a density functional perturbation theory (DFPT)-based approach to compute U parameters, they used self-consistent site-dependent U values computed from first principles to study the defect chemistry and magnetic properties of SMO bulk and strained thin films.

"This extremely close collaboration between the two groups, one focusing on methods development and the other on applications in defective oxide materials, was sparked by uniting these different research foci under the MARVEL umbrella" said the University of Bern's Ulrich Aschauer, one of the two PIs involved in the work.

The results show that this self-consistent U improves the structure of stoichiometric SrMnO3 with respect to other methods, including one using an empirical U. For defective systems, U changes as a function of the distance of the transition-metal site from the defect, its oxidation state, its coordination number, and the magnetic phase of the material. Taking into account this dependence, in turn, affects the computed defect formation energies and the predicted strain- and/or defect-induced magnetic phase transitions, especially when occupied localized states appear in the band gap of the material upon defect creation.

"We believe this approach can lead to more accurate predictions of the energetics of defects associated with in-gap states in semiconductors or insulators both compared to standard DFT and possibly hybrid functionals at a computational cost that is significantly lower than for the latter," Ricca said. "This is thanks to a proper description of the structural and local chemical effects induced by the defects."

National Centre of Competence in Research (NCCR) MARVEL

Related Lead Articles:

Stroke patients take the lead in their rehabilitation
EPFL spin-off Intento has developed a patient-controlled electrical-stimulation device that helps stroke victims regain mobility in paralyzed arms.
Preventing lead spread
While lead pipes were banned decades ago, they still supply millions of American households with water each day.
Evidence lacking to support 'lead diet'
Writing in the Journal of Pediatrics, UB researcher says public health experts need to be more up front with parents in explaining that CDC dietary recommendations may not help children who have been exposed to lead.
New drug lead identified in fight against TB
Antibacterial compounds found in soil could spell the beginnings of a new, much-needed treatment for tuberculosis, new research led by the University of Sydney has found. tuberculosis (TB) causes more deaths than any other infectious disease including HIV/AIDs.
Lead dressed like gold
Princeton researchers have taken a different approach to alchemists' ancient goal to transmute elements by making one material behave that another.
Iron supplements in the fight against lead
Targeted iron supplements in biscuits can achieve a striking reduction in the level of lead in children's blood in regions with high exposure to this toxic heavy metal.
A more accurate sensor for lead paint
A new molecular gel recipe developed at the University of Michigan is at the core of a prototype for a more accurate lead paint test.
Using urban pigeons to monitor lead pollution
Tom Lehrer sang about poisoning them, but those pigeons in the park might be a good way to detect lead and other toxic compounds in cities.
Looking beyond conventional networks can lead to better predictions
New research from a team of University of Notre Dame researchers led by Nitesh Chawla, Frank M.
What can we expect next in the long history of lead poisoning in the US?
While state and federal officials continue to criticize each other for failing to guarantee safe drinking water, the question of exactly who is responsible for crises like in Flint, Michigan, lies at the root of the problem.

Related Lead Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.