Nav: Home

Probability of catastrophic geomagnetic storm lower than estimated

March 12, 2019

Three mathematicians and a physicist from the Universitat Autònoma de Barcelona (UAB), the Mathematics Research Centre (CRM) and the Barcelona Graduate School of Mathematics (BGSMath) propose a mathematical model which allows making reliable estimations on the probability of geomagnetic storms caused by solar activity.

The researchers, who published the study in the journal Scientific Reports (of the Nature group) in February, calculated the probability in the next decade of a potentially catastrophic event for the Earth's telecommunications, such as the one which occurred between the end of August and beginning of September 1859, known as the "Carrington Event". That year, astronomer Richard C. Carrington observed the most powerful geomagnetic storm known up to date. According to this new research, the probability of a similar solar storm occurring in the following decade ranges from 0.46% to 1.88%, far less than the percentage estimated before. "In 2012, the results reported in scientific literature estimated the probability to be around 12%, ten times more than our more pessimistic estimation", David Moriña, first author of the study and postdoctoral researcher explains. "Our model is more flexible than previous ones and it also includes the model used for the previous estimations as a specific case", Moriña adds.

The intensity of solar surface perturbations such as flares and coronal mass ejections affecting the Earth's magnetosphere has been measured since 1957 using the "Dst" index, which centralises the values collected every hour in stations located across the globe. Normally, the value of this parameter ranges from -20 to +20 nT (nanoteslas, one billionth of a tesla unit; a tesla unit can be compared to the magnetic flux density generated by a powerful loudspeaker). It is estimated that the Dst index associated with the Carrington Event had a value of approximately -850 nT.

Geomagnetic storms are responsible for spectacular phenomena such as the aurora borealis observed at the Earth's highest latitudes, which depending on their intensity can interfere drastically with different aspects of human activity. Examples of severe disruptions occurring in past decades are the interruption of electrical and navigation systems, and satellite communications. "In Carrington's time, the only infrastructure affected was the global telephone network", says one of the authors of the study, mathematician Isabel Serra. "Now, a storm of such intensity could have catastrophic effects on our society. According to a 2013 study conducted by the Lloyd's of London insurance company and Atmospheric and Environmental Research, the duration of these effects could last longer than a year, and costs could rise to 2.5 trillion dollars. These are number that should make us think", Isabel Serra insists.

"A probability close to 2% which is what we have calculated for a highly intense storm should not be looked over if we take into account the consequences of such an event", says Professor Pere Puig, one of the authors of the paper. "Governments should have action protocols to react to such disasters, in order to inform and calm the population left without electrical energy and no way to communicate. We cannot forget that there will be very little time of reaction before the unforeseen arrival of this type of storm".
-end-
Participating in the study were David Moriña and Pere Puig, researchers from the Barcelona Graduate School of Mathematics (BGSMath) and the Department of Mathematics, UAB; Isabel Serra from the Mathematics Research Centre (CRM) and the Barcelona Supercomputing Center (BSC) and affiliate lecturer at the UAB; and Álvaro Corral, researcher from the Mathematics Research Centre (CRM), the Barcelona Graduate School of Mathematics (BGSMath) and the Complexity Science Hub in Vienna, as well as affiliate lecturer of the Department of Mathematics, UAB. David Moriña received funding under the Banco Santander-María de Maeztu framework agreement.

Universitat Autonoma de Barcelona

Related Mathematics Articles:

Could mathematics help to better treat cancer?
Impaired information processing may prevent cells from perceiving their environment correctly; they then start acting in an uncontrolled way and this can lead to the development of cancer.
People can see beauty in complex mathematics, study shows
Ordinary people see beauty in complex mathematical arguments in the same way they can appreciate a beautiful landscape painting or a piano sonata.
Improving geothermal HVAC systems with mathematics
Sustainable heating, ventilation, and air conditioning systems, such as those that harness low-enthalpy geothermal energy, are needed to reduce collective energy use and mitigate the continued effects of a warming climate.
How the power of mathematics can help assess lung function
Researchers at the University of Southampton have developed a new computational way of analyzing X-ray images of lungs, which could herald a breakthrough in the diagnosis and assessment of chronic obstructive pulmonary disease (COPD) and other lung diseases.
Mathematics pushes innovation in 4-D printing
New mathematical results will provide a potential breakthrough in the design and the fabrication of the next generation of morphable materials.
More democracy through mathematics
For democratic elections to be fair, voting districts must have similar sizes.
How to color a lizard: From biology to mathematics
Skin color patterns in animals arise from microscopic interactions among colored cells that obey equations discovered by Alan Turing.
US educators awarded for exemplary teaching in mathematics
Janet Heine Barnett, Caren Diefenderfer, and Tevian Dray were named the 2017 Deborah and Franklin Tepper Haimo Award winners by the Mathematical Association of America (MAA) for their teaching effectiveness and influence beyond their institutions.
Authors of year's best books in mathematics honored
Prizes for the year's best books in mathematics were awarded to Ian Stewart and Tim Chartier by the Mathematical Association of America (MAA) on Jan.
The mathematics of coffee extraction: Searching for the ideal brew
Composed of over 1,800 chemical components, coffee is one of the most widely-consumed drinks in the world.
More Mathematics News and Mathematics Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab