Nav: Home

Researchers create SAMβA, a new molecule to treat heart failure

March 12, 2019

A group of researchers based in Brazil and the United States have developed a molecule that halts the progression of heart failure and improves the heart's capacity to pump blood.

Rats with heart failure were treated for six weeks with the molecule, called "SAMβA." The disease not only stabilized, as it usually does in response to conventional drug therapy, but actually regressed, thanks to an improvement in the contractile capacity of the cardiac muscle.

Heart failure may result from myocardial infarction, commonly known as a heart attack, when a blocked coronary artery prevents blood from reaching a section of the heart. The rest of the cardiac tissue is overloaded, and the heart's capacity to pump blood throughout the body gradually declines over time.

The researchers have applied for a patent on SAMβA and its use in the United States. The molecule may come to supplement or even replace the medications currently used to treat heart failure, most of which were developed back in the 1980s.

An article describing SAMβA has been published in Nature Communications. The name SAMβA stands for "selective antagonist of mitofusin 1-β2PKC association," referring to the molecule's capacity to inhibit the interaction between protein kinase C beta 2 (β2PKC), a common protein in heart cells, and mitofusin 1 (Mfn1), a key element of mitochondria, which are the organelles that produce energy for cells.

In this interaction, β2PKC inhibits Mfn1, preventing the mitochondria from producing energy and hence weakening the heart's blood-pumping action.

"This interaction was one of our main findings in this study. Its critical role in the progression of heart failure was previously unknown," said Julio Cesar Batista Ferreira, a professor at the University of São Paulo's Biomedical Science Institute (ICB-USP) in Brazil and principal investigator for the study. Ferreira began research in the field in 2009 when he was a postdoctoral fellow at the same university's School of Physical Education and Sports (EEFE-USP) with a scholarship from FAPESP - São Paulo Research Foundation.

Once the patent has been granted, Ferreira added, the molecule can be tested in connection with hypertension and other cardiovascular diseases.

"We suspect the interaction between these two proteins may be a factor in other degenerative diseases involving mitochondrial dysfunction," Ferreira told Office.

Clerk and managers

Previous research by Ferreira's group at ICB-USP showed that the inhibition of β2PKC, which is overproduced in the cells of failing hearts, improved cardiac function in these patients. However, the intervention prevented the protein from acting in other ways that benefit the heart.

The novelty of SAMβA is its selectivity: it inhibits only β2PKC's interaction with Mfn1 in mitochondria and does not affect the protein's other actions.

Ferreira offers an analogy to explain this selectivity, comparing a heart cell to a company office with several rooms. β2PKC is an office clerk who moves along the corridors and goes into the different rooms, interacting with the managers of the respective sectors to perform his/her duties. When he/she enters one particular room (the mitochondrion), however, the office clerk (β2PKC) prevents a particular manager (Mfn1) from doing his/her job.

With the first molecule developed by the group, it was as if the doors of all the rooms were closed. The office clerk no longer hampered the mitochondrial manager and did not enter any other rooms; the company (heart cell) did not function harmoniously.

However, all SAMβA does is prevent β2PKC from interacting with Mfn1 in mitochondria. "It's as if we only closed the door to the room the clerk isn't allowed to enter while leaving him free to go into all the others, so the company can continue functioning properly," Ferreira said.

Infarcted rats

To arrive at SAMβA, the researchers performed tests with recombinant proteins, cells, animals, and samples of cardiac tissue from patients with heart failure.

Ferreira's group first conducted different in vitro experiments to test the interaction between β2PKC and Mfn1. They found six molecules that inhibited the interaction, but only SAMβA did so selectively without influencing other interactions.

Next, SAMβA was tested in human heart cells. In addition to halting the progression of the disease, which is already achieved by the drugs currently in use, the molecule boosted the cells' capacity to contract - an essential part of the job done by the heart in pumping blood throughout the body.

SAMβA also reduced the amount of hydrogen peroxide in heart cell mitochondria. The presence of this peroxide characterizes oxidative stress, which is a trigger of cardiac cell degeneration.

Finally, the researchers induced myocardial infarction in rats. One month later, the rats developed heart failure, and an osmotic pump was implanted under the skin of each rat to release small amounts of SAMβA or an innocuous substance (in the case of the control group) for six weeks.

Unlike the control rats, those that were treated with SAMβA stopped exhibiting heart failure, and their cardiac function improved.

"The drugs in current use halt progression of the disease but never make it regress. We showed that by regulating this specific interaction, we could both halt progression and make the disease regress to a less severe stage," Ferreira said.

The next step is to make SAMβA available to other research groups for testing against other diseases in different experimental models. It will also be necessary to test the molecule's interaction with the drugs now used to treat heart failure.

"Validation and reproduction of our findings by other groups are critical to the process of developing SAMβA for use in treating heart failure. We will be seeking partners in the private and public sectors for this purpose," Ferreira said.

Cardiovascular diseases kill 17.9 million people annually, causing 31% of all global deaths, according to the World Health Organization (WHO). Acute myocardial infarction with subsequent heart failure is a major cause of morbidity and mortality worldwide.
-end-
About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Heart Failure Articles:

New hope for treating heart failure
Heart failure patients who are getting by on existing drug therapies can look forward to a far more effective medicine in the next five years or so, thanks to University of Alberta researchers.
Activated T-cells drive post-heart attack heart failure
Chronic inflammation after a heart attack can promote heart failure and death.
ICU care for COPD, heart failure and heart attack may not be better
Does a stay in the intensive care unit give patients a better chance of surviving a chronic obstructive pulmonary disease (COPD) or heart failure flare-up or even a heart attack, compared with care in another type of hospital unit?
Tissue engineering advance reduces heart failure in model of heart attack
Researchers have grown heart tissue by seeding a mix of human cells onto a 1-micron-resolution scaffold made with a 3-D printer.
Smoking may lead to heart failure by thickening the heart wall
Smokers without obvious signs of heart disease were more likely than nonsmokers and former smokers to have thickened heart walls and reduced heart pumping ability.
After the heart attack: Injectable gels could prevent future heart failure (video)
During a heart attack, clots or narrowed arteries block blood flow, harming or killing cells in the heart.
Heart failure after first heart attack may increase cancer risk
People who develop heart failure after their first heart attack have a greater risk of developing cancer when compared to first-time heart attack survivors without heart failure, according to a study today in the Journal of the American College of Cardiology.
Scientists use 'virtual heart' to model heart failure
A team of researchers have created a detailed computational model of the electrophysiology of congestive heart failure, a leading cause of death.
Increase in biomarker linked with increased risk of heart disease, heart failure, death
In a study published online by JAMA Cardiology, Elizabeth Selvin, Ph.D., M.P.H., of the Johns Hopkins Bloomberg School of Public Health, Baltimore, and colleagues examined the association of six-year change in high-sensitivity cardiac troponin T with incident coronary heart disease, heart failure and all-cause mortality.
1 in 4 patients develop heart failure within 4 years of first heart attack
One in four patients develop heart failure within four years of a first heart attack, according to a study in nearly 25,000 patients presented today at Heart Failure 2016 and the 3rd World Congress on Acute Heart Failure by Dr.

Related Heart Failure Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".