Nav: Home

Tied in knots: New insights into plasma behavior focus on twists and turns

March 12, 2019

Whether zipping through a star or a fusion device on Earth, the electrically charged particles that make up the fourth state of matter better known as plasma are bound to magnetic field lines like beads on a string. Unfortunately for plasma physicists who study this phenomenon, the magnetic field lines often lack simple shapes that equations can easily model. Often they twist and knot like pretzels. Sometimes, when the lines become particularly twisted, they snap apart and join back together, ejecting blobs of plasma and tremendous amounts of energy.

Now, findings from an international team of scientists led by the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) show that the twisted magnetic fields can evolve in only so many ways, with the plasma inside following a general rule. As long as there is high pressure on the outside of the plasma pressing inward, the plasma will spontaneously take on a doughnut, or torus, shape and balloon out in a horizontal direction. However, the outward expansion is constrained by the average amount of twisting in the plasma, a quality known as "helicity."

"The helicity prevents the configuration from blowing apart and forces it to evolve into this self-organized, twisted structure," says Christopher Smiet, a physicist at PPPL and lead author of the paper reporting the results in the Journal of Plasma Physics.

The findings apply to the entire gamut of plasma phenomena and can provide insight into the behavior of magnetic clouds, huge masses of plasma emitted from the sun that can expand and collide with the Earth's own magnetic field. In mild form, the collisions cause the northern lights. If powerful enough, these collisions can disrupt the operations of satellites and interfere with cell phones, global positioning systems, and radio and television signals.

"Since the effects are in part caused by topological properties like linking and twisting that are not affected by shape or size, the results apply both to outer space plasma plumes thousands of light years long and centimeter-long structures in Earth-bound fusion facilities," Smiet says.

Moreover, "by studying the magnetic field in this more general framework, we can learn new things about the self-organizing processes within tokamaks and the instabilities that interfere with them," Smiet says.

Smiet's future research plans involve investigating changes in the linking and connections of field lines in tokamaks during two types of plasma instabilities that can hinder fusion reactions. "It's fascinating what you can learn when you study how knots unravel," Smiet says.

The research team included scientists from Leiden University, the Dutch Institute for Fundamental Energy Research, and the University of California-Santa Barbara. This research was supported by the U.S. Department of Energy (Fusion Energy Sciences) and the Rubicon program that is partly funded by the Netherlands Organization for Scientific Research.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.
-end-


DOE/Princeton Plasma Physics Laboratory

Related Magnetic Field Articles:

Understanding stars: How tornado-shaped flow in a dynamo strengthens the magnetic field
A new simulation based on the von-Kármán-Sodium (VKS) dynamo experiment takes a closer look at how the liquid vortex created by the device generates a magnetic field.
'Quartz' crystals at the Earth's core power its magnetic field
Scientists at the Earth-Life Science Institute at the Tokyo Institute of Technology report in Nature (Fen.
Brightest neutron star yet has a multipolar magnetic field
Scientists have identified a neutron star that is consuming material so fast it emits more x-rays than any other.
Confirmation of Wendelstein 7-X magnetic field
Physicist Sam Lazerson of the US Department of Energy's Princeton Plasma Physics Laboratory has teamed with German scientists to confirm that the Wendelstein 7-X fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.
High-precision magnetic field sensing
Scientists have developed a highly sensitive sensor to detect tiny changes in strong magnetic fields.
Brilliant burst in space reveals universe's magnetic field
Scientists have detected the brightest fast burst of radio waves in space to date -- locating the source of the event with more precision than previous efforts.
Optical magnetic field sensor can detect signals from the nervous system
The human body is controlled by electrical impulses in the brain, the heart and nervous system.
What did Earth's ancient magnetic field look like?
New work from Carnegie's Peter Driscoll suggests Earth's ancient magnetic field was significantly different than the present day field, originating from several poles rather than the familiar two.
Just what sustains Earth's magnetic field anyway?
Earth's magnetic field shields us from deadly cosmic radiation, and without it, life as we know it could not exist here.
Ironing out the mystery of Earth's magnetic field
The Earth's magnetic field has been existing for at least 3.4 billion years thanks to the low heat conduction capability of iron in the planet's core.

Related Magnetic Field Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...