Nav: Home

Scientists identify gene that keeps PTSD-like behavior at bay in female mice

March 12, 2019

NEW YORK -- More than 30 years ago, scientists discovered that neurological illnesses such as mad cow and Creutzfeldt-Jakob diseases are caused by misfolded proteins called prions. But in recent years, Nobel laureate Eric Kandel, MD, demonstrated in mice that some prions are beneficial and serve important biological functions in the brain and body. And today, new Columbia research from Dr. Kandel and his colleague Joseph Rayman, PhD, describes how one such prion-like protein, encoded by a gene called TIA1, helps the brain keep fearful memories in check. Without this gene, female mice exhibit the tell-tale signs of post-traumatic stress disorder, or PTSD.

The results of this study, published today in Cell Reports, point to TIA1 as a new target in the fight against PTSD, which is about twice as common in women as in men.

"Deciphering the interplay between biology and environment that gives rise to all psychiatric disorders, including PTSD, has proven incredibly difficult," said Dr. Kandel, who is University Professor and codirector of Columbia's Mortimer B. Zuckerman Mind Brain Behavior Institute, as well as Kavli Professor of Brain Science at Columbia. "Today's discovery about TIA1 has uncovered one such key component to that interplay. Our research offers a promising way forward for developing treatments that mitigate the underlying causes of PTSD and other related psychiatric illnesses."

Prions were originally described in the context of neurological conditions called transmissible spongiform encephalopathies, which include mad cow disease in cattle and Creutzfeldt-Jakob disease in people. In these diseases, the misfolded prions clump together inside brain cells called neurons, forming large aggregates that cause neurons to degrade and die. Upon neuronal death, the prions are released and infect neighboring cells, much like a virus. Over time, this process leads to devastating and sometimes deadly neurological symptoms.

But in 2003, Dr. Kandel and his team discovered that some prions are not dangerous, but functional, and can play important biological roles. For example, in 2015, Dr. Kandel and his team discovered that the functional prion CPEB3 helps the brain maintain long-term memories. TIA1 is another such functional prion. It helps neurons cope with cellular stress.

"When neurons undergo stress, such as in response to a viral infection, the TIA1 protein sequesters non-essential biomolecules inside the cell," said Dr. Rayman, who is an associate research scientist in the Kandel lab at Columbia's Zuckerman Institute and the paper's first author. "This allows the cell to focus all its efforts on fighting the stress."

TIA1 is present in many brain regions but is particularly active in the ventral hippocampus, an area known to regulate memories associated with stress and fear. Drs. Kandel and Rayman wondered if disruptions to TIA1 function could cause disruptions in fear memory -- which plays a key role in PTSD.

To find out, the researchers changed the amount of TIA1 in the ventral hippocampus of both male and female mice. The scientists then trained the mice to associate an innocuous smell, that of ethanol, with a stressful experience. When placed in other ethanol-scented environments, the animals exhibited avoidance behavior: they tended to move away from the stressful scent.

But when the researchers removed TIA1, they saw a change in behavior -- a change that was restricted to female mice. Removing TIA1 appeared to have no effect on the males, but the females' avoidance behavior skyrocketed; their fearful memories were heightened significantly.

The researchers argue that this marked sex difference may be an essential key to uncovering why the prevalence of PTSD is so much higher in women, as compared to men. It also emphasizes the importance of including female mice in scientific research, a practice that has long been discouraged by the scientific community.

"The inclusion of female mice in scientific studies is a recent phenomenon; researchers once reasoned that cyclical hormone changes in females would complicate study results," said Dr. Rayman. "But including female mice in our study proved transformational. We would never have discovered the importance of TIA1 had we not examined the female brain."

Psychiatric disorders are notoriously complex. They are thought to be linked to many genes, each of which contributes only a small amount to the problem. But Drs. Kandel and Rayman are confident that their work can be extended to identify and treat disorders in people. For example, PTSD can ultimately be traced back to abnormal processing of fear memory. And the same brain regions responsible for fear memory in mice are responsible for fear memory in people.

"Not only that, but the gene that encodes TIA1 in mice also exists in the human genome," said Dr. Rayman. "To search for links between TIA1 activity levels and stress responses in humans, we are currently analyzing DNA from individuals in Sweden."

"We hope our work, combined with the work of others, will lead to the identification of a large number of genes, each of which contributes a certain amount of PTSD risk," said Dr. Kandel, who is also a Senior Investigator at the Howard Hughes Medical Institute. "Advances in computational and theoretical modeling could soon allow us look at a person's particular genetic composition and identify his or her risk for developing a psychiatric disorder, such as PTSD -- and then offer the best way to treat it at the molecular level."
-end-
This paper is titled "Genetic perturbation of TIA1 reveals a physiological role in fear memory." Additional contributors include Joud Hijazi, Xiang Li, Nancy Kedersha and Paul Anderson.

This research was supported by the Howard Hughes Medical Institute, the Institute for Molecular Neuroscience (W81XWH-11-2-0145, Subaward 803-236), the Institute for Translational Neuroscience (W81XWH-12-2-0048, Subaward 8741sc) and Cohen Veterans Bioscience.

The authors report no financial or other conflicts of interest.

Columbia University's Mortimer B. Zuckerman Mind Brain Behavior Institute brings together a group of world-class scientists and scholars to pursue the most urgent and exciting challenge of our time: understanding the brain and mind. A deeper understanding of the brain promises to transform human health and society. From effective treatments for disorders like Alzheimer's, Parkinson's, depression and autism to advances in fields as fundamental as computer science, economics, law, the arts and social policy, the potential for humanity is staggering. To learn more, visit: zuckermaninstitute.columbia.edu.

The Zuckerman Institute at Columbia University

Related Stress Articles:

Captive meerkats at risk of stress
Small groups of meerkats -- such as those commonly seen in zoos and safari parks -- are at greater risk of chronic stress, new research suggests.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
Some veggies each day keeps the stress blues away
Eating three to four servings of vegetables daily is associated with a lower incidence of psychological stress, new research by University of Sydney scholars reveals.
Prebiotics may help to cope with stress
Probiotics are well known to benefit digestive health, but prebiotics are less well understood.
Building stress-resistant memories
Though it's widely assumed that stress zaps a person's ability to recall memory, it doesn't have that effect when memory is tested immediately after a taxing event, and when subjects have engaged in a highly effective learning technique, a new study reports.
Stress during pregnancy
The environment the unborn child is exposed to inside the womb can have a major effect on her or his development and future health.
New insights into how the brain adapts to stress
New research led by the University of Bristol has found that genes in the brain that play a crucial role in behavioural adaptation to stressful challenges are controlled by epigenetic mechanisms.
Uncertainty can cause more stress than inevitable pain
Knowing that there is a small chance of getting a painful electric shock can lead to significantly more stress than knowing that you will definitely be shocked.
Stress could help activate brown fat
Mild stress stimulates the activity and heat production by brown fat associated with raised cortisol, according to a study published today in Experimental Physiology.
Experiencing major stress makes some older adults better able to handle daily stress
Dealing with a major stressful event appears to make some older adults better able to cope with the ups and downs of day-to-day stress.

Related Stress Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...