Nav: Home

Novel potent antimicrobial from thermophilic bacterium

March 12, 2019

University of Groningen microbiologists and their colleagues from Lithuania have discovered a new glycocin, a small antimicrobial peptide with a sugar group attached, which is produced by a thermophilic bacterium and is stable at relatively high temperatures. They also succeeded in transferring the genes required to produce this glycocin to an E. coli bacterium. This makes it easier to produce and investigate this compound, which could potentially be used in biofuel production. These findings were published in Nature Communications on 7 March.

The rise of antibiotic resistance has spurred the search for new antimicrobials. Bacteriocins - peptide toxins produced by bacteria to inhibit growth in similar or related bacterial strains - are a possible alternative to the more traditional antibiotics. Bacteriocins would also be useful to protect high-temperature fermentations mediated by thermophilic bacteria. But this would require the use of bacteriocins that are stable at higher temperatures.

Mystery

'That is why we were interested to find that the thermophilic bacterium Aeribacillus palladius, isolated from the soil above an oil well in Lithuania, appeared to produce an antibacterial peptide,' says University of Groningen Professor of Molecular Biology, Oscar Kuipers. Thus far, purification and identification of the compound had not been successful. Therefore, Ph.D. student Arnoldas Kaunietis from Vilnius University spent almost two years in Kuipers' lab to solve the mystery. He is the first author on the new paper.

By analyzing genomic information from the Lithuanian bacteria using BAGEL4 software, developed by Anne de Jong and Auke van Heel in Kuipers' group, genes that are responsible for the production of the bacteriocin were discovered and the final gene product was named pallidocin. The BAGEL4 software searches for gene clusters with the potential ability to produce novel antimicrobials.

Sugar

The antimicrobial turned out to be a glycocin, belonging to a class of post-translationally modified peptides. This means that after its production, one or more functional groups are added to the peptide. In the case of glycocins, this functional group is a sugar. 'Only five other glycocins were known thus far,' says Kuipers.

In order to facilitate further research and engineering of this peptide, the genes responsible for the production of pallidocin were transferred to E. coli BL21 (DE3) bacteria. 'The expression of the genes worked well, which is a real breakthrough, as it is difficult to express a whole antimicrobial gene cluster from a gram-positive bacterial strain directly in a gram-negative bacterium and to get the product secreted.'

Biofuel

After isolating pallidocin, the scientists were able to confirm that it is highly thermostable and exhibits extremely strong activity against specific thermophilic bacteria. Furthermore, by using the sequence of pallidocin biosynthesis genes in BAGEL4, two similar peptides were discovered in two different strains of Bacillus bacteria. These peptides, named Hyp1 and Hyp2, were also successfully expressed in the E. coli strain. 'This shows that the expression system works well for various glycocins; it is able to produce them in vivo', says Kuipers.

Pallidocin might be useful in high-temperature fermentations, which are used to produce biofuels or chemical building blocks. The higher temperature makes it easier to recover volatile products such as ethanol but also reduces the risk of contamination with common bacteria. However, contamination with thermophilic bacteria is possible. 'Both pallidocin and Hyp1 appear to be active against thermophilic bacteria and some Bacillus species,' says Kuipers. And there could be more applications: 'Contamination by thermophiles is also a problem in the food industry.'
-end-
Reference: Arnoldas Kaunietis, Andrius Buivydas, Donaldas J. ?itavičius & Oscar P. Kuipers: Heterologous biosynthesis and characterization of a glycocin from a thermophilic bacterium. Nature Communications 7 March 2019

University of Groningen

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.