Nav: Home

Small babies, big data

March 12, 2019

The first week of a newborn's life is a time of rapid biological change as the baby adapts to living outside the womb, suddenly exposed to new bacteria and viruses. Yet surprisingly little is known about these early changes. An international research study co-led by Boston Children's Hospital has pioneered a technique to get huge amounts of data from a tiny amount of newborn blood, creating the most detailed accounting to date.

The work, published today in Nature Communications, profiled molecular changes in the first week of newborn life, including what genes are turned on, what proteins are being made and what metabolites are changing. It establishes a common developmental pathway for the first week of a newborn's life, providing a baseline to further our understanding of newborn health and, in particular, the impacts of vaccines on newborns.

"Most infections in the world occur early in life, and newborns have the greatest susceptibility and the worst outcomes," says Ofer Levy, MD, PhD, director of the Precision Vaccines Program at Boston Children's Hospital and a senior author on the paper. "This work provides a valuable window into health and disease in the first week of life."

The research team includes members of the Expanded Program on Immunization Consortium (EPIC), an international collaboration to employ a systems biology approach to understanding vaccine action in early life. Levy partnered with Beate Kampmann, MD, PhD, of the London School of Hygiene & Tropical Medicine (LSHTM) and the Medical Research Council (MRC)- The Gambia, and Tobias Kollmann, MD, PhD, University of British Columbia (UBC) to establish the consortium, which has its administrative hub in the Precision Vaccines Program.

Tiny sample, big knowledge

Previous efforts to gather data on newborn development have been limited by the challenge of obtaining a large enough blood sample from a tiny newborn. The team overcame this challenge with new techniques, partnering with Robert Hancock, PhD of UBC, who led an RNA analysis, and Hanno Steen, PhD of Boston Children's, who led a proteomics analysis. Using sophisticated software to analyze complex data derived from less than half a teaspoon of blood, the UBC labs of Hancock and Scott Tebbutt, PhD found thousands of changes over the first week, including changes in gene expression and components of immune defense such as interferons, neutrophil function and complement pathways.

"We demonstrated that it's possible to recruit newborns in a resource-poor setting, obtain small amounts of their blood, process it, ship it, conduct systems biology assays and integrate the results -- turning big data into knowledge," says Levy. "Key to our analysis was comparing each newborn at day 1, day 3 and day 7 to their own baseline condition on the day of birth. That's when we discovered dramatic molecular changes driven by development."

An inter-continental effort

The researchers piloted their systems biology approach with a group of infants from The Gambia in West Africa after first obtaining permission from village elders and informed consent from mothers in local languages such as Mandinka, Fula and Wolof. They then validated their approach with a second group of Australasian newborns recruited by William Pomat, PhD of the Papua New Guinea Institute of Medical Research and Anita van den Biggelaar, PhD of the University of Western Australia.

The two independent cohorts showed a common, highly dynamic developmental trajectory. The findings suggest that the changes do not occur at random, but instead follow an age-specific pathway.

"This common trajectory is exciting as it allows us to ask bigger questions about the differences between different populations and the impact of biomedical interventions such as vaccines on development," says Levy.

Optimizing vaccines in early life

The study establishes a baseline for health and disease in early life that can help measure responses to key medical interventions and the impact of factors such as diet, disease and maternal health. Levy is particularly interested in studying the impact of immunization. Newborns' responses to immunization are distinct from those of older individuals, and much needs to be learned to optimize the use and benefit of vaccines in early life.

"Currently, most vaccines are developed by trial and error," says Levy. "We seek deep molecular insight into vaccine function in early life so we can better develop infant vaccines for the future."
-end-
The study was supported in part by the NIH's National Institute of Allergy and Infectious Diseases as part of the Human Immunology Project Consortium (5U19AI118608-02) and by the Precision Vaccines Program. Co-first authors were Amy Lee, Casey Shannon and Nelly Amenyogbe of UBC; Tue Bennike of Aalborg University, Denmark; Joann Diray-Arce of Boston Children's and Olubukola ("Bukky") Idoko of LSHTM/MRC-Gambia. Co-senior authors were van den Biggelaar, Steen, Tebbutt, Kampmann, Levy and Kollmann.

About Boston Children's Hospital

Boston Children's Hospital, the primary pediatric teaching affiliate of Harvard Medical School, is home to the world's largest research enterprise based at a pediatric medical center. Its discoveries have benefited both children and adults since 1869. Today, more than 3,000 scientists, including 8 members of the National Academy of Sciences, 18 members of the National Academy of Medicine and 12 Howard Hughes Medical Investigators comprise Boston Children's research community. Founded as a 20-bed hospital for children, Boston Children's is now a 415-bed comprehensive center for pediatric and adolescent health care. For more, visit our Vector and Thriving blogs and follow us on social media @BostonChildrens, @BCH_Innovation, Facebook and YouTube.

Boston Children's Hospital

Related Vaccines Articles:

Better vaccines are in our blood
Red blood cells don't just shuttle oxygen from our lungs to our organs: they also help the body fight off infections by capturing pathogens in the blood and presenting them to immune cells in the spleen.
Challenges in evaluating SARS-CoV-2 vaccines
With more than 140 SARS-CoV-2 vaccines in development, the race is on for a successful candidate to help prevent COVID-19.
Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.
Misinformation on vaccines readily available online
Parents researching childhood vaccinations online are likely to encounter significant levels of negative information, researchers at the University of Otago, Wellington, have found.
Battle with the cancer: New avenues from childhood vaccines
A new research from the University of Helsinki showed for the first time how the pre-immunization acquired through common childhood vaccines can be used to enhance therapeutic cancer treatment.
Personalized cancer vaccines
The only therapeutic cancer vaccine available on the market has so far showed very limited efficacy in clinical trials.
Doubts raised about effectiveness of HPV vaccines
A new analysis of the clinical trials of HPV vaccines to prevent cervical cancer raises doubts about the vaccines' effectiveness.
Egg-based flu vaccines: Not all they're cracked up to be?
Flu season is underway in the Northern Hemisphere, sickening millions of people and in rare cases, causing hospitalization or death.
You're probably not allergic to vaccines
Five facts about allergies to vaccines, pulled together by two McMaster University physicians.
Micromotors deliver oral vaccines
Vaccines have saved millions of lives, but nobody likes getting a shot.
More Vaccines News and Vaccines Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.