Nav: Home

Amorous planthopper bugs shake abdomen 'snapping organ' to attract mates

March 12, 2019

Planthopper bugs may be small, but they attract mates from afar by sending vibrational calls along plant stems and leaves using fast, rhythmic motions of their abdomen. In a new study publishing March 12 in the open-access journal PLOS Biology, researchers at the University of Oxford show how a newly-discovered "snapping organ" enables courting bugs of both sexes to produce this shaking motion through a combination of muscle action and elastic recoil.

Producing vibrations that will travel well along plant material requires the sudden release of mechanical energy - many times faster than could be achieved through direct action of the planthoppers' tiny muscles.

The authors of the new study discovered that the secret lies in the fast release of stored elastic energy, rather like a catapult, but with the key difference that the stored energy is released cyclically, leading to a repetitive up-down motion of the abdomen. This is accomplished by a complex anatomical structure that the researchers call the "snapping organ", because of the speed with which it snaps open and closed.

The discovery of the new organ was as unexpected as its mechanism. "I was studying 3D images of planthoppers that I had collected using X-ray imaging in a particle accelerator, trying to understand the evolutionary relationships between different groups," said lead author of the study, Leonidas-Romanos Davranoglou. "But as I dissected the bugs in virtual reality on my computer, I immediately realised that I was looking at something entirely new, so decided to investigate further."

The researchers collected hundreds of live planthoppers from the hills around Athens, which they brought back to their Oxford lab to conduct experiments. To understand the vibration generation mechanism of the new snapping organ, they used microtomography, laser vibrometry, confocal microscopy, and high-speed video recordings. The scientists then teamed up with the Vibration and Uncertainty Lab at Oxford's Department of Engineering Science to build a theoretical model of the mechanism. The vibratory organ was found to be present in all of the many different families of planthoppers, showing that this entire group of bugs are specialists in this unusual form of communication.

"These insects include several economically important pest species, including the brown planthopper, which is one of the most serious pests on rice in the developing world," said co-author Dr Beth Mortimer. "Understanding how these insects signal to each other may help in disrupting their communication channels or detecting their calls. Silent to the ear, the planthoppers have come up with their own novel way to communicate with potential mates. You could say it's their form of Snapchat."

While the discovery of the snapping organ is new, the bugs' approach is an extremely old mechanism of communication, dating back at least 250 million years, to the dawn of planthopper evolution.
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000155

Citation: Davranoglou L-R, Cicirello A, Taylor GK, Mortimer B (2019) Planthopper bugs use a fast, cyclic elastic recoil mechanism for effective vibrational communication at small body size. PLoS Biol 17(3): e3000155. https://doi.org/10.1371/journal.pbio.3000155

Funding: For funding, BM thanks the Royal Commission for the Exhibition of 1851: https://www.royalcommission1851.org/. LRD is grateful to the Alexander S. Onassis Public Benefit Foundation Scholarships for Hellenes: https://www.onassis.org/en/scholarships-greeks.php and to Oxford-NaturalMotion: http://www.ox.ac.uk/admissions/graduate/fees-and-funding/graduate-scholarships for funding. GT was supported by a research grant from Jesus College, Oxford: https://www.jesus.ox.ac.uk/. AC is grateful to Balliol College for the Career Development Fellowship in Engineering: https://www.balliol.ox.ac.uk/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Mechanism Articles:

Antibiotics with novel mechanism of action discovered
Many life-threatening bacteria are becoming increasingly resistant to existing antibiotics.
New mechanism for dysfunctional insulin release identified
In a new study, researchers at Uppsala University have identified a previously unknown mechanism that regulates release of insulin, a hormone that lowers blood glucose levels, from the β-cells (beta cells) of the pancreas.
New protein-sensing mechanism discovered
In a stunning discovery, molecular biologists from the University of Konstanz and ETH Zurich have been able to demonstrate that the nascent polypeptide-associated complex (NAC) senses newly synthesized proteins upon birth inside the ribosomal tunnel.
New deactivation mechanism for switch proteins detected
A new mechanism for the deactivation of switch proteins has been identified by researchers from Ruhr-Universität Bochum, headed by Professor Klaus Gerwert and Dr.
A new mechanism for accessing damaged DNA
UV light damages the DNA of skin cells, which can lead to cancer.
New mechanism of bone growth discovered
In a paper published in Nature, researchers at Karolinska Institutet report that bone growth in mice takes place in accordance with the same principles as when new cells are constantly produced in blood, skin and other tissue.
An elegant mechanism
Researchers discovered a connection between metabolite and protein transport in the powerhouse of the cell.
A new mechanism in the control of inflammation
Researchers at the Centro Nacional de Investigaciones Cardiovasculares (CNIC) have discovered a new inflammation control mechanism that shows how the damage caused by the immune response can be controlled.
RUDN biochemists described a new mechanism for autoimmunity suppression
RUDN biochemists suggested a new mechanism following which a human body prevents the development of autoimmune diseases (i.e. conditions caused by the damaging influence of the immune system on a body's own organs and tissues), allergies, and implant rejection.
Mechanism behind orchid beauty revealed
Researchers at Tohoku University in Japan have identified the gene related to the greenish flower mutation in the Habenaria orchid.
More Mechanism News and Mechanism Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab