Nav: Home

Artificial intelligence cuts lung cancer screening false positives

March 12, 2019

PITTSBURGH, March 12, 2019 - Lung cancer is the leading cause of cancer deaths worldwide. Screening is key for early detection and increased survival, but the current method has a 96 percent false positive rate. Using machine learning, researchers at the University of Pittsburgh and UPMC Hillman Cancer Center have found a way to substantially reduce false positives without missing a single case of cancer.

The study was published today in the journal Thorax. This is the first time artificial intelligence has been applied to the question of sorting out benign from cancerous nodules in lung cancer screening.

"We were able to rule out cancer in about a third of patients, so they wouldn't need biopsies, they wouldn't need PET scans or a short-interval CT scan. They just need to come back in a year," said senior author David Wilson, M.D., M.P.H., associate professor of medicine, cardiothoracic surgery and clinical and translational science at Pitt and co-director of the Lung Cancer Center at UPMC Hillman.

A low-dose CT scan is the standard diagnostic test for lung cancer for those at high risk. Nationwide, about a quarter of these scans turn up shadows indicating nodules in the lung - a positive result - but fewer than 4 percent of those patients actually have cancer.

Right now, it's impossible to know from the scan alone who those 4 percent are, Wilson said. Of course, physicians don't want to miss any real cases of cancer, but they're also trying to reduce the false positive rate, he noted.

"A positive test creates anxiety, increases health care costs, and the follow-up tests are not risk free," said study coauthor Panayiotis (Takis) Benos, Ph.D., professor and vice chair of computational and systems biology and associate director of the Integrative Systems Biology Program at Pitt. "For the 96 percent of people who have benign nodules, these procedures are unnecessary. So, we try to mine the data to tell which are benign and which are malignant."

Wilson, Benos and colleagues gathered low-dose CT scan data from 218 high-risk UPMC patients who were later confirmed to have either lung cancer or benign nodules. Then they fed the data into a machine learning algorithm - a form of artificial intelligence - to create a model that calculates the probability of cancer. If the probability falls below a certain threshold, the model rules out cancer.

Comparing the model's assessment against the actual diagnoses of these patients, the researchers found that they would have been able to save 30 percent of the people with benign nodules from undergoing additional testing, without missing a single case of cancer.

The three factors that were most important to the model, Benos said, are the number of blood vessels surrounding the nodule, the number of nodules and the number of years since the patient quit smoking.

"While it has been known for some time that tumors recruit more vascular support, this is the first time that we've been able to use computer technology to quantify their contribution and incorporate them into a predictive model that decides, with certainty, that some patients don't have cancer," Wilson said. "The next step is to evaluate this technique in a larger population, and actually it's started already, using about 6,000 scans from the National Lung Screening Trial."
-end-
Additional authors on the study include Vineet Raghu, Wei Zhao, M.D., Ph.D., Jiantao Pu, Ph.D., Joseph Leader, Ph.D., Jian-Min Yuan, M.D., Ph.D., of Pitt; James Herman, M.D., and Renwei Wang, M.D., of UPMC Hillman.

This work was supported by the National Institutes of Health (U01HL137159, R01LM012087), particularly the National Cancer Institute (P50CA90440, P30CA047904, R21CA197493 and T32CA082084).

To read this release online or share it, visit http://www.upmc.com/media/news/031219-lung-ca-machine-learning [when embargo lifts].

About the University of Pittsburgh Schools of the Health Sciences

The University of Pittsburgh Schools of the Health Sciences include the schools of Medicine, Nursing, Dental Medicine, Pharmacy, Health and Rehabilitation Sciences and the Graduate School of Public Health. The schools serve as the academic partner to the UPMC (University of Pittsburgh Medical Center). Together, their combined mission is to train tomorrow's health care specialists and biomedical scientists, engage in groundbreaking research that will advance understanding of the causes and treatments of disease and participate in the delivery of outstanding patient care. Since 1998, Pitt and its affiliated university faculty have ranked among the top 10 educational institutions in grant support from the National Institutes of Health. For additional information about the Schools of the Health Sciences, please visit http://www.health.pitt.edu.

About UPMC

A $19 billion world-renowned health care provider and insurer, Pittsburgh-based UPMC is inventing new models of patient-centered, cost-effective, accountable care. UPMC provides more than $900 million a year in benefits to its communities, including more care to the region's most vulnerable citizens than any other health care institution. The largest nongovernmental employer in Pennsylvania, UPMC integrates 87,000 employees, 40 hospitals, 700 doctors' offices and outpatient sites, and a 3.5 million-member Insurance Services Division, the largest medical insurer in western Pennsylvania. As UPMC works in close collaboration with the University of Pittsburgh Schools of the Health Sciences, U.S. News & World Report consistently ranks UPMC Presbyterian Shadyside on its annual Honor Roll of America's Best Hospitals. UPMC Enterprises functions as the innovation and commercialization arm of UPMC, and UPMC International provides hands-on health care and management services with partners around the world. For more information, go to UPMC.com.

http://www.upmc.com/media

Contact: Erin Hare
Office: 412-864-7194
Mobile: 412-738-1097
E-mail: HareE@upmc.edu

Contact: Madison Brunner
Office: 412-578-9193
Mobile: 412-432-8390
E-mail: BrunnerM@upmc.edu

University of Pittsburgh

Related Lung Cancer Articles:

AI helps to fight against lung cancer
Lung cancer has been the leading cause of cancer-related deaths in 2015 in United States.
Free lung-cancer screening in the Augusta area finds more than double the cancer rate of previous screenings
The first year of free lung cancer screening in the Augusta, Ga., area found more than double the rate seen in a previous large, national study as well as a Massachusetts-based screening for this No.
Antioxidants and lung cancer risk
An epidemiological study published in Frontiers in Oncology suggests that a diet high in carotenoids and vitamin C may protect against lung cancer.
Lung cancer may go undetected in kidney cancer patients
Could lung cancer be hiding in kidney cancer patients? Researchers with the Harold C.
Hitgen and Cancer Research UK's Manchester Institute enter license agreement in lung cancer
Cancer Research UK, Cancer Research Technology (CRT), the charity's commercial arm, and HitGen Ltd, a privately held biotech company focused on early drug discovery, announced today that they have entered into a licence agreement to develop a novel class of drugs against lung cancer.
Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Huntsman Cancer Institute research holds promise for personalized lung cancer treatments
New research from scientists at Huntsman Cancer Institute (HCI) at the University of Utah uncovered distinct types of tumors within small cell lung cancer that look and act differently from one another.
High levels of estrogen in lung tissue related to lung cancer in postmenopausal women
Researchers from Kumamoto University, Japan have found that postmenopausal women with multicentric adenocarcinoma of the lung have a higher concentration of estrogen in non-cancerous areas of the peripheral lung than similar women diagnosed with single tumor lung cancer.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Pericardial window operation less efficient in cases of lung cancer than any other cancer
Pericardial window operation, a procedure, where abnormal quantity of malignant fluid, surrounding the heart, is drained into the neighbouring chest cavity, is commonly applied to patients diagnosed with cancer.

Related Lung Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...