Nav: Home

No super-Drosophila: Vinegar fly species have a good vision or olfaction, but not both

March 12, 2019

The authors such as Ian Keesey, Markus Knaden and Bill Hansson had observed different behavior in earlier studies on the black-bellied vinegar fly Drosophilamelanogaster and the cherry vinegar fly Drosophila suzukii, a relatively new pest in Central Europe: while D. melanogaster are more likely to be attracted by just the smell of food, in D. suzukii vision also played an important role in foraging. These behavioral preferences were also reflected in the different sizes of the respective sensory organs. Based on this observation, the scientists hypothesized that the variation in vision and olfaction is the result of a so-called trade-off. With this term, biology describes when a beneficial change in one trait is linked to a detrimental change in another trait in the adaptation to the environment. In the case of the genus Drosophila, such a trade-off seems to take place in the expression of visual and olfactory organs.

In order to test their tradeoff hypothesis, the researchers examined the forms and functions of eyes and antennae as well as the associated visual and olfactory brain structures of a total of 62 Drosophila species: "The genus Drosophila offered us a much greater variation in sensory expression than we anticipated within a single closely related group of insects. And indeed, big-eyed species showed small noses or antennae, while species with larger antennae had proportionally smaller eyes," says lead author Ian Keesey. The size of the sense organs, in turn, reflects the preferences related to selecting a host plant or a mate. Big-nose flies are more likely to use olfactory cues, while big-eyed flies are more likely to follow visual cues.

"The detailed analysis of eyes and antennae revealed the whole spectrum of the trade-off between vision and olfaction: we found species that had invested primarily in vision, species where vision and olfaction are about equal, and species that rely primarily on their olfactory sense, but none of the species studied had both large eyes and large antennae, " explains Markus Knaden. For their analyses, the researchers reconstructed the primary sensory brain structures that play a role in vision and olfaction, including the optic and antennal lobes. In addition, they used high-resolution microscopy to take a closer look at the sensory organs of the various fly species. "One reason why animals have to choose either a well-developed olfactory system or vision might be that in embryonic development both sensory organs emerge from the same structure with only a limited number of nuclei. The competition for resources, which decides which of the two sensory organs is more pronounced, thus takes place at a very early stage of development," says Bill Hansson, head of the Department of Evolutionary Neuroethology.

An important finding of the study is that genetic traits are linked. A change in one trait can have a large impact on the organism. However, some properties are less easy to modify, especially when tethered together with another. "It is fascinating that two senses so well studied, such as vision and olfaction, are inversely correlated. We now suspect that evolutionary pressures exist that are driving insects to prioritize the eye or the nose," says Ian Keesey.

With their study, the scientists want to open new avenues in the so-called Eco-Evo-Devo research. This research field is based on the assumption that concepts of ecology (eco), evolution (evo) and developmental biology (devo) are tightly linked, and the understanding of ecological relationships also requires evolutionary and developmental knowledge and vice versa. Although genomic data are available for many species, knowledge of their ecology is often lacking. "These trade-offs, especially in genetic model organisms, provide an avenue for determining the mechanisms for how ecology and evolution shape the natural world," says Ian Keesey.

The scientists also want to encourage other research groups not to look only at the well-known Drosophilamelanogaster, but to include more species of this genus in their studies. The extensive datasets of this study are all available in the Max Planck database Edmond and researchers are welcome to use them for comparisons with other Drosophila species of the entire genus.
-end-


Max Planck Institute for Chemical Ecology

Related Embryonic Development Articles:

New tools to study the origin of embryonic stem cells
Researchers at Karolinska Institutet have identified cell surface markers specific for the very earliest stem cells in the human embryo.
Dad's exposure to phthalates in plastics may affect embryonic development
A new study led by environmental health scientist Richard Pilsner at the University of Massachusetts Amherst, one of the first to investigate whether preconception exposures to phthalates in fathers has an effect on reproductive success via embryo quality, found that exposures from select chemicals tested were associated with 'a pronounced decrease in blastocyst quality' at an early stage in embryo development.
Vitamin D increases the number of blood stem cells during embryonic development
Short exposure to vitamin D influences the number of blood stem cells in human umbilical cords and zebrafish embryos, Harvard researchers report in Cell Reports.
Jaw-dropping research explains mouth formation during embryonic development
Whitehead Institute researchers have identified an area in the developing face of embryonic frogs that unzips to form the mouth.
The first AI system for human embryonic state analysis is available for testing
The first implementation of Embryonic.AI was launched by LifeMap Discovery, Inc, a subsidiary of BioTime, Inc and is freely available for beta testing.
Asynchronous cell cycle phase key to critical stage of animal embryonic development
A pair of University of Tsukuba researchers discovered that the synchronous mitosis of early embryonic development switches to a patterned form at the 11th cell division following removal of a cell cycle compensatory mechanism.
Drug makes stem cells become 'embryonic' again
If you want to harness the full power of stem cells, all you might need is an eraser -- in the form of a drug that can erase the tiny labels that tell cells where to start reading their DNA.
Oncogene controls stem cells in early embryonic development
Many animal species delay the development of their embryos to ensure that their offspring is born at a favorable time.
'BPA-free' plastic accelerates embryonic development, disrupts reproductive system
Companies advertise 'BPA-free' as a safer version of plastic products ranging from water bottles to sippy cups to toys.
New study of gene mutations causing Leigh syndrome shows effects on embryonic development
Embryonic stem cells (ESCs) prove to be an excellent model system for determining at what stage the mutations in the Complex I gene, known to cause Leigh syndrome, begin to affect embryonic development.

Related Embryonic Development Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...