Nav: Home

'Spillway' for electrons could keep lithium metal batteries from catching fire

March 12, 2020

Nanoengineers at the University of California San Diego developed a safety feature that prevents lithium metal batteries from rapidly heating up and catching fire in case of an internal short circuit.

The team made a clever tweak to the part of the battery called the separator, which serves as a barrier between the anode and cathode, so that it slows down the flow of energy (and thus heat) that builds up inside the battery when it short circuits.

The researchers, led by UC San Diego nanoengineering professor Ping Liu and his Ph.D. student Matthew Gonzalez, detail their work in a paper published in Advanced Materials.

"We're not trying to stop battery failure from happening. We're making it much safer so that when it does fail, the battery doesn't catastrophically catch on fire or explode," said Gonzalez, who is the paper's first author.

Lithium metal batteries fail because of the growth of needle-like structures called dendrites on the anode after repeated charging. Over time, dendrites grow long enough to pierce through the separator and create a bridge between the anode and cathode, causing an internal short circuit. When that happens, the flow of electrons between the two electrodes gets out of control, causing the battery to instantly overheat and stop working.

The separator that the UC San Diego team developed essentially softens this blow. One side is covered by a thin, partially conductive web of carbon nanotubes that intercepts any dendrites that form. When a dendrite punctures the separator and hits this web, electrons now have a pathway through which they can slowly drain out rather than rush straight towards the cathode all at once.

Gonzalez compared the new battery separator to a spillway at a dam.

"When a dam starts to fail, a spillway is opened up to let some of the water trickle out in a controlled fashion so that when the dam does break and spill out, there's not a lot of water left to cause a flood," he said. "That's the idea with our separator. We are draining out the charge much, much slower and prevent a 'flood' of electrons to the cathode. When a dendrite gets intercepted by the separator's conductive layer, the battery can begin to self-discharge so that when the battery does short, there's not enough energy left to be dangerous."

Other battery research efforts focus on building separators out of materials that are strong enough to block dendrites from breaking through. But a problem with this approach is that it just prolongs the inevitable, Gonzalez said. These separators still need to have pores that let ions flow through in order for the battery to work. As a consequence, when the dendrites eventually make it through, the short circuit will be even worse.

Rather than block dendrites, the UC San Diego team sought to mitigate their effects.

In tests, lithium metal batteries equipped with the new separator showed signs of gradual failure over 20 to 30 cycles. Meanwhile, batteries with a normal (and slightly thicker) separator experienced abrupt failure in a single cycle.

"In a real use case scenario, you wouldn't have any advance warning that the battery is going to fail. It could be fine one second, then catch on fire or short out completely the next. It's unpredictable," Gonzalez said. "But with our separator, you would get advance warning that the battery is getting a little bit worse, a little bit worse, a little bit worse, each time you charge it."

While this study focused on lithium metal batteries, the researchers say the separator can also work in lithium ion and other battery chemistries. The team will be working on optimizing the separator for commercial use. A provisional patent has been filed by UC San Diego.
-end-
Paper title: "Draining Over Blocking: Nano-Composite Janus Separators for Mitigating Internal Shorting of Lithium Batteries." Co-authors include Qizhang Yan, John Holoubek, Zhaohui Wu, Hongyao Zhou, Nicholas Patterson, Victoria Petrova and Haodong Liu, UC San Diego.

University of California - San Diego

Related Electrons Articles:

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.
Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.
Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.
Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.
Using light to put a twist on electrons
Method with polarized light can create and measure nonsymmetrical states in a layered material.
What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.
Electrons in rapid motion
Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique.
Taming electrons with bacteria parts
In a new study, scientists at the MSU-DOE Plant Research Laboratory report a new synthetic system that could guide electron transfer over long distances.
Hot electrons harvested without tricks
Semiconductors convert energy from photons into an electron current. However, some photons carry too much energy for the material to absorb.
Cooling nanotube resonators with electrons
In a study in Nature Physics, ICFO researchers report on a technique that uses electron transport to cool a nanomechanical resonator near the quantum regime.
More Electrons News and Electrons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.