Nav: Home

The need for speed

March 12, 2020

Whether running away from a predator or to win an Olympic gold, how fast we run determines the final outcome. Locomotion is produced when limb muscles contract in a co-ordinated fashion. This, in turn, is caused by electrical impulses sent by nerve cells called motor neurons located in the spinal cord. Earlier work showed that based on an animal's momentary needs, brain circuits select a suitable course of action and set the frequency of motion. Then, just like engaging gears in an automobile, spinal 'speed' modules are selectively activated to achieve a certain speed. Thus, motor neurons belonging to the fast module are activated only during fast frequency movements, but are silent during slower frequency movements. Now, scientists at the National Centre for Biological Sciences (NCBS), Bangalore show that parallel neural pathways that bypass the brain's tight frequency control enable animals to move faster.

In their study, the scientists chose to study speed regulation in larval zebrafish during a reflex behavior called optomotor response. This behavior allows zebrafish to maintain a stable position in streams by generating swims to counter any drift. They evoked this behavior in the lab by playing black and white moving bars (gratings) on a screen placed underneath the fish. While larvae were pinned on a dish to allow measurement of electrical activity from motor neurons, they still responded reliably to the visual stimulus by producing motor commands for swimming. Using this preparation it was possible to probe mechanisms of speed regulation at a single cell level.

Dopamine, a chemical produced by some nerve cells, is released at multiple sites including onto motor neurons. The researchers at NCBS discovered that when the receptors for dopamine were activated, zebrafish larvae swam faster for the same grating stimulus. On closer examination, they found that larvae could swim faster because for every tail beat, the tail made larger amplitude bends. This implies that to achieve faster swims, more motor neurons were activated. Recording the electrical activity of single motor neurons, the researchers found that not only was the slow speed module activated more vigorously after dopamine receptor activation, but fast module motor neurons, which were hitherto silent, were also activated. This was caused by direct actions of dopamine on the motor neurons, which caused the motor neurons to be more excitable.

These results are exciting because they show that motor neurons, which are thought to mostly only relay the command coming to them, are capable of altering behavioral output via modulation of their activity patterns. This study shows that, even after the brain has issued the command for a movement, changing the properties of motor neurons can alter the final behavioral outcome. Such motor neuronal plasticity can be exploited for rehabilitation after spinal cord injury or stroke.
-end-


National Centre for Biological Sciences

Related Dopamine Articles:

How dopamine drives brain activity
Using a specialized magnetic resonance imaging (MRI) sensor that can track dopamine levels, MIT neuroscientists have discovered how dopamine released deep within the brain influences distant brain regions.
Novelty speeds up learning thanks to dopamine activation
Brain scientists led by Sebastian Haesler (NERF, empowered by IMEC, KU Leuven and VIB) have identified a causal mechanism of how novel stimuli promote learning.
Evidence in mice that childhood asthma is influenced by the neurotransmitter dopamine
Neurons that produce the neurotransmitter dopamine communicate with T cells to enhance allergic inflammation in the lungs of young mice but not older mice, researchers report Nov.
Chronic adversity dampens dopamine production
People exposed to a lifetime of psychosocial adversity may have an impaired ability to produce the dopamine levels needed for coping with acutely stressful situations.
Blocking dopamine weakens effects of cocaine
Blocking dopamine receptors in different regions of the amygdala reduces drug seeking and taking behavior with varying longevity, according to research in rats published in eNeuro.
How chronic inflammation may drive down dopamine and motivation
A new computational method will allow scientists to measure the effects of chronic inflammation on energy availability and effort-based decision-making.
Dopamine regulates sex differences in worms
Dopamine is responsible for sex-specific variations in common behaviors, finds a study of worm movements published in JNeurosci.
Dopamine conducts prefrontal cortex ensembles
New research in rodents reveals for the first time how dopamine changes the function of the brain's prefrontal cortex.
Dopamine modulates reward experiences elicited by music
New study in Proceedings of the National Academy of Science reveals causal link between dopamine and human reward response to music listening.
Dopamine modulates the reward experiences elicited by music
Researchers from IDIBELL-UB, the Sant Pau Hospital and the McGill University published a new study in PNAS that shows for the first time a causal link between the dopaminergic system and enjoying music.
More Dopamine News and Dopamine Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.