Ocean acidification impacts oysters' memory of environmental stress

March 12, 2020

As oceans absorb more carbon dioxide, they are becoming increasingly acidic and shifting the delicate balance that supports marine life. How species will cope with ocean acidification and the other consequences of global climate change is still very much unknown and could have sweeping consequences.

Researchers from the University of Washington School of Aquatic and Fishery Sciences have discovered that ocean acidification impacts the ability of some oysters to pass down "memories" of environmental trauma to their offspring.

The two papers were published in December in Ecological Applications and the Journal of Shellfish Research.

"Warming and acidifying oceans negatively influence many marine species. However, some species that live in extreme environments, such as the intertidal, may be more resilient than others to these changes," said Laura Spencer, one of the two lead authors and a graduate student in aquatic and fishery sciences. "Some species may even be able to pass on memories of harsh conditions to their offspring, making them more capable of surviving in similarly harsh environments."

Researchers studied two species of ecologically and commercially valuable oysters found throughout Puget Sound: the Olympia oyster and the Pacific oyster. Although oyster larvae are sensitive to acidifying oceans, adult oysters commonly occur in intertidal areas and estuaries where they must endure constantly fluctuating water conditions.

It is this hardiness that has researchers hopeful that oysters can withstand an increasingly acidic ocean. If their resilience to stressors can be passed down to their offspring, it could promote an increased tolerance among the future population.

In Spencer's study, Olympia oysters were exposed to a combination of elevated temperatures and acidified conditions during winter months, mimicking what might happen under climate change. The higher water temperatures caused the oysters to spawn earlier; however, these effects were canceled out when combined with acidified conditions. Researchers then reared and transplanted the exposed oysters' offspring to four estuaries in Puget Sound. They observed that the offspring whose parents were exposed to acidified conditions in the lab had higher survival rates in two of the four bays.

"We found that Olympia oyster adults were relatively resilient to acidification and warming when exposed during the winter," said Spencer. "Most interestingly, we found evidence that adult exposure to acidified conditions can benefit offspring by improving survival."

This carryover effect demonstrates that the experiences of oyster parents have a direct impact on how their offspring perform, and juvenile oysters may be more resilient in certain environments when their parents have been pre-conditioned by similar stressors.

In the other study, adult Pacific oysters were similarly exposed to acidified conditions in the lab. The oysters were then placed back in ambient water to recover before spawning. Researchers observed that the embryonic and larval offspring of female oysters exposed to these experimental conditions experienced poorer survival than a similar control group.

"The conditions one generation of Pacific oysters experience can affect how their children perform," said lead author Yaamini Venkataraman, a graduate student in aquatic and fishery sciences. "Even if oysters are not in stressful conditions when they reproduce, their previous stressful experiences can impact their offspring."

These two contrasting results are both encouraging and concerning to Washington's shellfish industry, which generates nearly $150 million a year and provides over 2,700 jobs. While one study revealed that juvenile Olympia oysters benefited and experienced a survival advantage due to parental exposure to acidified conditions, the other study showed the embryonic and larval survival of Pacific oysters decreased with parental exposure. The authors believe these differing results could be species-specific or because the experiments focused on different life stages of oysters.

Nevertheless, determining how and why some species, such as the Olympia oyster, tolerate ocean acidification and warming helps inform where to focus conservation resources and how to improve growing methods, said Spencer.

"We needed to broaden our understanding of environmental memory when thinking about how oysters or other organisms will persist in the face of climate change," explained Venkataraman. "The aquaculture industry is part of the fiber of Washington, and understanding how oysters will respond to changes in their environment, like more acidic water conditions, across multiple generations is crucial to sustaining the industry."

This recent research shows that as the world's oceans warm and become more acidic due to climate change, species tolerance or sensitivity can't be defined by looking solely at one generation of oysters.
-end-
Additional co-authors are Ryan Crim and Stuart Ryan with the Puget Sound Restoration Fund; Micah Horwith, who completed the work with Washington Department of Natural Resources but now works at Washington State Department of Ecology; and Steven Roberts, a UW professor of aquatic and fishery sciences.

This research was funded by the National Science Foundation Grant, the University of Washington Hall Conservation Genetics Research Fund, the National Science Foundation Graduate Research Fellowship Program, the National Shellfisheries Association Melbourne R. Carriker Student Research Grant, Washington State Department of Natural Resources and Washington Sea Grant.

For more information, contact Spencer at lhs3@uw.edu and Venkataraman at yaaminiv@uw.edu.

University of Washington

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.