Mayo Clinic research discovers how stem cells repair damage from heart attacks

March 12, 2020

ROCHESTER, Minn. -- Mayo Clinic researchers have uncovered stem cell-activated mechanisms of healing after a heart attack. Stem cells restored cardiac muscle back to its condition before the heart attack, in turn providing a blueprint of how stem cells may work.

The study, published in NPJ Regenerative Medicine, finds that human cardiopoietic cells zero in on damaged proteins to reverse complex changes caused by a heart attack. Cardiopoietic cells are derived from adult stem cell sources of bone marrow.

"The extent of change caused by a heart attack is too great for the heart to repair itself or to prevent further damage from occurring. Notably, however, cardiopoietic stem cell therapy reversed, either fully or partially, two-thirds of these disease-induced changes, such that 85% of all cellular functional categories affected by disease responded favorably to treatment," says Andre Terzic, M.D., Ph.D., director of Mayo Clinic's Center for Regenerative Medicine. Dr. Terzic is the senior author of the study.

This new understanding of how stem cells restore heart health could provide the framework for broader applications of stem cell therapy across various conditions.

"The actual mode of action of stem cells in repairing a diseased organ has until now been poorly understood, limiting adoption in clinical care. This study sheds light on the most intimate, yet comprehensive, regenerative mechanisms ? paving a road map for responsible and increasingly informed stem cell application," says Dr. Terzic.

Heart disease is a leading cause of death in the U.S. Every 40 seconds, someone in the U.S. has a heart attack, according to the Centers for Disease Control and Prevention. During a heart attack, cardiac tissue dies, weakening the heart.

"The response of the diseased heart to cardiopoietic stem cell treatment revealed development and growth of new blood vessels, along with new heart tissue," adds Kent Arrell, Ph.D., a Mayo Clinic cardiovascular researcher and first author of the study.

The research


Researchers compared the diseased hearts of mice that did not receive human cardiopoietic stem cell therapy with those that did. Using a data science approach to map all the proteins in the heart muscle, researchers identified 4,000 cardiac proteins, more than 10% of which suffered damage by a heart attack.

"While we anticipated that the stem cell treatment would produce a beneficial outcome, we were surprised how far it shifted the state of diseased hearts away from disease and back toward a healthy, pre-disease state," says Dr. Arrell.

Cardiopoietic stem cells are being tested in advanced clinical trials in heart patients.

"The current findings will enrich the base of knowledge pertinent to stem cell therapies and may have the potential to guide therapeutic regimens in the future," says Dr. Terzic.
-end-
This study was made possible by funding from National Institutes of Health grants R01 HL134664 and T32 HL07111, Regenerative Medicine Minnesota grant 021218BT001, the Marriott Family Foundation, the Van Cleve Cardiac Regenerative Medicine Program, the Michael S. and Mary Sue Shannon Family, and Mayo Clinic's Center for Regenerative Medicine.

Dr. Terzic is the Michael S. and Mary Sue Shannon Director, Mayo Clinic Center for Regenerative Medicine, Marriott Family Professor in Cardiovascular Diseases Research, and Marriott Family Director, Comprehensive Cardiac Regenerative Medicine.

About Mayo Clinic's Center for Regenerative Medicine


Mayo Clinic's Center for Regenerative Medicine seeks to integrate, develop and deploy new regenerative medicine products and services that continually differentiate Mayo's practice to draw patients from around the world for complex care. Learn more on Mayo Clinic's Center for Regenerative Medicine website.

About Mayo Clinic


Mayo Clinic is a nonprofit organization committed to innovation in clinical practice, education and research, and providing compassion, expertise and answers to everyone who needs healing. Visit the Mayo Clinic News Network for additional Mayo Clinic news and An Inside Look at Mayo Clinic for more information about Mayo.

Mayo Clinic

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.