Fermilab experiments constrain Higgs mass

March 13, 2009

Batavia, Ill.--The territory where the Higgs boson may be found continues to shrink. The latest analysis of data from the CDF and DZero collider experiments at the U.S. Department of Energy's Fermilab now excludes a significant fraction of the allowed Higgs mass range established by earlier measurements. Those experiments predict that the Higgs particle should have a mass between 114 and 185 GeV/c2. Now the CDF and DZero results carve out a section in the middle of this range and establish that it cannot have a mass in between 160 and 170 GeV/c2.

"The outstanding performance of the Tevatron and CDF and DZero together have produced this important result," said Dennis Kovar, Associate Director of the Office of Science for High Energy Physics at the U.S. Department of Energy. "We're looking forward to further Tevatron constraints on the Higgs mass."

The Higgs particle is a keystone in the theoretical framework known as the Standard Model of particles and their interactions. According to the Standard Model, the Higgs boson explains why some elementary particles have mass and others do not.

So far, the Higgs particle has eluded direct detection. Searches at the Large Electron Positron collider at the European laboratory CERN established that the Higgs boson must weigh more than 114 GeV/c2. Calculations of quantum effects involving the Higgs boson require its mass to be less than 185 GeV/c2.

"A cornerstone of NSF's support of particle physics is the search for the origin of mass, and this result takes us one step closer," said Physics Division Director Joe Dehmer, of the National Science Foundation.

The observation of the Higgs particle is also one of the goals of the Large Hadron Collider experiments at CERN, which plans to record its first collision data before the end of this year.

The success of probing the Higgs territory at the Tevatron has been possible thanks to the excellent performance of the accelerator and the continuing improvements that the experimenters incorporate into the analysis of the collider data.

"Fermilab's Tevatron collider typically produces about ten million collisions per second," said DZero co-spokesperson Darien Wood, of Northeastern University. "The Standard Model predicts how many times a year we should expect to see the Higgs boson in our detector, and how often we should see particle signals that can mimic a Higgs. By refining our analysis techniques and by collecting more and more data, the true Higgs signal, if it exists, will sooner or later emerge."

To increase their chances of finding the Higgs boson, the CDF and DZero scientists combine the results from their separate analyses, effectively doubling the data available.

"A particle collision at the Tevatron collider can produce a Higgs boson in many different ways, and the Higgs particle can then decay into various particles," said CDF co-spokesperson Rob Roser, of Fermilab. "Each experiment examines more and more possibilities. Combining all of them, we hope to see a first hint of the Higgs particle."

So far, CDF and DZero each have analyzed about three inverse femtobarns of collision data--the scientific unit that scientists use to count the number of collisions. Each experiment expects to receive a total of about 10 inverse femtobarns by the end of 2010, thanks to the superb performance of the Tevatron. The collider continues to set numerous performance records, increasing the number of proton-antiproton collisions it produces.
The Higgs search result is among approximately 70 results that the CDF and DZero collaborations presented at the annual conference on Electroweak Physics and Unified Theories known as the Rencontres de Moriond, held March 7-14. In the past year, the two experiments have produced nearly 100 publications and about 50 Ph.D.s that have advanced particle physics at the energy frontier.

CDF is an international experiment of 602 physicists from 63 institutions in 15 countries. DZero is an international experiment conducted by 550 physicists from 90 institutions in 18 countries. Funding for the CDF and DZero experiments comes from DOE's Office of Science, the National Science Foundation and a number of international funding agencies.

Fermilab, the U.S. Department of Energy's Fermi National Accelerator Laboratory located near Chicago, operates the Tevatron, the world's highest-energy particle collider. The Fermi Research Alliance LLC operates Fermilab under a contract with DOE.

DOE/Fermi National Accelerator Laboratory

Related Higgs Boson Articles from Brightsurf:

Through the nanoscale looking glass -- determining boson peak frequency in ultra-thin alumina
'Mysterious' vibrational properties of nanoscale glasses studied by subjecting novel (and slightly explosive) particles of aluminium wrapped in a thin alumina skin to neutron spectroscopy measurement at ANSTO.

In search of the Z boson
At the Japanese High-energy Accelerator Research Organization, KEK, in Tsukuba, about 50 kilometers north of Tokyo, the Belle II experiment has been in operation for about one year now.

Belle II yields first results in search of the Z' boson
The Belle II experiment started about one year ago. Physical Review Letters has now published the initial results of the detector.

Electrically charged higgs versus physicists: 1-0 until break
The last missing particle of the Standard Model, the Higgs boson, was discovered in 2012 in the experiments at the Large Hadron Collider.

On the trail of the Higgs Boson
In a quest to understand the production mechanisms for the Higgs Boson, Silvia Biondi from the National Institute of Nuclear Physics, Bologna, Italy investigated the traces of a rare process, called ttH, in which the Higgs Boson is produced in association with a pair of elementary particles referred to as top quarks.

New finding of particle physics may help to explain the absence of antimatter
With the help of computer simulations, particle physics researchers may be able to explain why there is more matter than antimatter in the Universe.

NYU Physicists develop new techniques to enhance data analysis for large hadron collider
NYU physicists have created new techniques that deploy machine learning as a means to significantly improve data analysis for the Large Hadron Collider (LHC), the world's most powerful particle accelerator.

SMU physicist explains the latest Higgs boson announcement in layman's terms
The discovery of the Higgs boson transforming as it decays into bottom quarks is a big step forward in the quest to understand how the Higgs particle enables fundamental particles to acquire mass.

Higgs particle's favorite 'daughter' comes home
In a finding that caps years of exploration into the tiny particle known as the Higgs boson, researchers have traced the fifth and most prominent way that the particle decays into other particles.

Researchers detect Higgs boson coupling with top quark
Detection of Higgs-top quark interaction at LHC by CMS and Atlas international collaborations, with Brazilian researchers participating, confirms theoretical predictions of Standard Model of particle physics.

Read More: Higgs Boson News and Higgs Boson Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.