University of Pennsylvania researchers find that the unexpected is a key to human learning

March 13, 2009

PHILADELPHIA - The human brain's sensitivity to unexpected outcomes plays a fundamental role in the ability to adapt and learn new behaviors, according to a new study by a team of psychologists and neuroscientists from the University of Pennsylvania.

Using a computer-based card game and microelectrodes to observe neuronal activity of the brain, the Penn study, published this week in the journal Science, suggests that neurons in the human substantia nigra, or SN, play a central role in reward-based learning, modulating learning based on the discrepancy between the expected and the realized outcome.

"This is the first study to directly record neural activity underlying this learning process in humans, confirming the hypothesized role of the basal ganglia, which includes the SN, in models of reinforcement including learning, addiction and other disorders involving reward-seeking behavior," said lead author Kareem Zaghloul, postdoctoral fellow in neurosurgery at Penn's School off Medicine. "By responding to unexpected financial rewards, these cells encode information that seems to help participants maximize reward in the probabilistic learning task."

Learning, previously studied in animal models, seems to occur when dopaminergic neurons, which drive a larger basal ganglia circuit, are activated in response to unexpected rewards and depressed after the unexpected omission of reward. Put simply, a lucky win seems to be retained better than a probable loss.

Similar to an economic theory, where efficient markets respond to unexpected events and expected events have no effect, we found that the dopaminergic system of the human brain seems to be wired in a similar rational manner -- tuned to learn whenever anything unexpected happens but not when things are predictable," said Michael J. Kahana, senior author and professor of psychology at Penn's School of Arts and Sciences.

Zaghloul worked with Kahana and Gordon Baltuch, associate professor of neurosurgery, in a unique collaboration among departments of psychology, neurosurgery and bioengineering. They used microelectrode recordings obtained during deep brain stimulation surgery of Parkinson's patients to study neuronal activity in the SN, the midbrain structure that plays an important role in movement, as well as reward and addiction. Patients with Parkinson's disease show impaired learning from both positive and negative feedback in cognitive tasks due to the degenerative nature of their disease and the decreased number of dopaminergic neurons.

The recordings were analyzed to determine whether responses were affected by reward expectation. Participants were asked to choose between red and blue decks of cards presented on a computer screen, one of which carried a higher probability of yielding a financial reward than the other. If the draw of a card yielded a reward, a stack of gold coins was displayed along with an audible ring of a cash register and a counter showing accumulated virtual earnings. If the draw did not yield a reward or if no choice was made, the screen turned blank and participants heard a buzz.

"This new way to measure dopaminergic neuron activity has helped us gain a greater understanding of fundamental cognitive activity," said Baltuch, director of the Penn Medicine Center for Functional and Restorative Neurosurgery.
-end-
The work is supported by grants from the National Institutes of Health, the Conte Center and the Dana Foundation.

University of Pennsylvania

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.