A versatile mouse that can teach us about many diseases and drugs

March 13, 2014

Scientists from the UK and Australia have created a mouse that expresses a fluorescing 'biosensor' in every cell of its body, allowing diseased cells and drugs to be tracked and evaluated in real time and in three dimensions.

This biosensor mimics the action of a target molecule, in this case a protein known as 'Rac', which drives cell movement in many types of cancer. Rac behaves like a switch, oscillating on the molecular level between two states - active or inactive.

When Rac is active, the biosensor picks up chemical cues and glows blue. When Rac is inactive the biosensor glows yellow.

Using sophisticated imaging techniques, it is possible to follow Rac activation in any organ at any time, or watch moment-by-moment oscillation of Rac activity at the front or back of cells as they move in the body. This technology has been used to monitor Rac activity in many organs in response to drug treatment.

The biosensor is a single molecule probe named 'Raichu-Rac' and was invented by Japanese scientist, Professor Miki Matsuda, in 2002.

Although many researchers have used Raichu-Rac since 2002, this is the first time a mouse has been genetically modified successfully to express the molecule throughout the body without affecting cell function. The mouse can be used to study any cancer type by crossing it with other models, limiting expression of Raichu-Rac to specific cell or tissue types. The mouse can also easily be adapted to study diseases other than cancer by expressing the biosensor in different disease models.

Dr Paul Timpson began the study with colleagues from the Beatson Institute for Cancer Research in Glasgow and completed it at Sydney's Garvan Institute of Medical Research. He collaborated closely throughout the process with Dr Heidi Welch from the Babraham Institute in Cambridge - the creator of the mouse - who uses it to study the movement of immune cells, known as neutrophils. The study, now online, has been published in the prestigious journal Cell Reports.

"The great thing about this mouse is its flexibility and potential for looking at a broad range of diseases and molecular targets," said Dr Paul Timpson.

"It allows us to watch and map, in real time, parts of a cell or organ where Rac is active and driving invasion. In cancers, a lot of blue indicates an aggressive tumour that is in the process of spreading."

"You can literally watch parts of a tumour turn from blue to yellow as a drug hits its target. This can be an hour or more after the drug is administered, and the effect can wane quickly or slowly. Drug companies need to know these details - specifically how much, how often and how long to administer drugs."

Dr Heidi Welch is very modest about her role in creating the mouse, viewing it mostly as a tool that will help other scientists to understand Rac and work out how to stop cancer cells from moving.

"The credit must go to Professor Miki Matsuda, the genius who invented the biosensor in the first place 12 years ago," she said.

"He made his discovery freely available to the scientific community, and has been very open about his findings since."

"Miki Matsuda was super-helpful in suggesting the expression levels we should be looking for, and in recommending the exact biosensor we should use, out of many he developed. He was superb."

According to Welch, competition is growing rapidly in this area, with Matsuda himself making biosensor mice for a variety of target molecules.
-end-


Garvan Institute of Medical Research

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.