Nav: Home

There's a close association between magnetic systems and certain states of brain activity

March 13, 2017

Scientists from the University of Granada (UGR) have proven for the first time that there is a close relationship between several emerging phenomena in magnetic systems (greatly studied by condensed matter physicists) and certain states of brain activity.

The researchers, who have published their work in the journal Neural Networks, have studied a brain model consisting of a balanced neuronal network with 80% excitatory synapses (that is, neuronal connections that favor the transmission of information between neurons) and 20% inhibitor synapses (neuronal connections which prevent said information from being transmitted).

Interestingly, the initial objective of the UGR scientists was to study how the autistic brain works, for which they intended to develop a mathematical model that would allow the neuronal connections of this disease to be analyzed.

However, as their research progressed they were able to demonstrate, both mathematically and through computer simulations, the existence of a type of state called "spin glass" in said system, which corresponds to states of low activity (Down) or high activity (Up). This has been widely described in the cortex of mammals, including the human brain.

The so called spin-glass states are magnetic systems that have been extensively described in low temperature disordered magnetic materials and also appear in artificial neural network models.

Spin-glass states are frozen disordered spin states due to frustration in the interactions between spins (physical property of subatomic particles, by which every elementary particle carries an intrinsic angular momentum whose value is fixed). Said states can be both ferromagnetic and antiferromagnetic, preventing the system from relaxing to the ground state or causing very long relaxation times.

In neuroscience, on the other hand, the spin-glass states manifest themselves by a frozen neuronal activity, and they appear (in the absence of thermal fluctuations or noise) due to the interference produced by the memorization of a macroscopic number of memories and the impossibility to discern among so many of them in the memory process.

In this paper, researchers have proven for the first time the constructive role and functionality of a particular type of spin-glass state in neuroscience. "In fact, we have proven both theoretically and through simulation that the Up and Down states observed in the activity of mammal brains would be but a mere manifestation of these spin-glass states", Joaquín Torres Agudo, professor from the Department of Electromagnetism and Physics of the Matter at the UGR and lead author of the study, explains.

This work constitutes an appropriate and novel theoretical framework to study the biological mechanisms of destabilization of these states that can induce transitions between Up and Down states, similar to the transitions commonly described during anesthesia processes or in the transition from wakefulness to sleep.
-end-


University of Granada

Related Neuroscience Articles:

Researchers rebuild the bridge between neuroscience and artificial intelligence
In an article in the journal Scientific Reports, researchers reveal that they have successfully rebuilt the bridge between experimental neuroscience and advanced artificial intelligence learning algorithms.
The evolution of neuroscience as a research
When the first issue of the JDR was published, the field of neuroscience did not exist but over subsequent decades neuroscience has emerged as a scientific field that has particular relevance to dentistry.
Diabetes-Alzheimer's link explored at Neuroscience 2019
Surprising links exist between diabetes and Alzheimer's disease, and researchers are beginning to unpack the pathology that connects the two.
Organoid research revealed at Neuroscience 2019
Mini-brains, also called organoids, may offer breakthroughs in clinical research by allowing scientists to study human brain cells without a human subject.
The neuroscience of autism: New clues for how condition begins
UNC School of Medicine scientists found that a gene mutation linked to autism normally works to organize the scaffolding of brain cells called radial progenitors necessary for the orderly formation of the brain.
Harnessing reliability for neuroscience research
Neuroscientists are amassing the large-scale datasets needed to study individual differences and identify biomarkers.
Blue Brain solves a century-old neuroscience problem
In a front-cover paper published in Cerebral Cortex, EPFL's Blue Brain Project, a Swiss Brain Research Initiative, explains how the shapes of neurons can be classified using mathematical methods from the field of algebraic topology.
Characterizing pig hippocampus could improve translational neuroscience
Researchers have taken further steps toward developing a superior animal model of neurological conditions such as traumatic brain injury and epilepsy, according to a study of miniature pigs published in eNeuro.
The neuroscience of human vocal pitch
Among primates, humans are uniquely able to consciously control the pitch of their voices, making it possible to hit high notes in singing or stress a word in a sentence to convey meaning.
Study tackles neuroscience claims to have disproved 'free will'
For several decades, some researchers have argued that neuroscience studies prove human actions are driven by external stimuli -- that the brain is reactive and free will is an illusion.
More Neuroscience News and Neuroscience Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.