Nav: Home

Pain in the neck

March 13, 2017

For millions of sufferers, there is nothing more debilitating than chronic back or joint pain. It can feel like a lifetime of misery.

But researchers led by University of Utah bioengineering assistant professor Robby Bowles have discovered a way to curb chronic pain by modulating genes that reduce tissue- and cell-damaging inflammation.

"This has applications for many inflammatory-driven diseases," Bowles says. "It could be applied for arthritis or to therapeutic cells that are being delivered to inflammatory environments that need to be protected from inflammation."

The team's discovery was published in a new paper this month, "CRISPR-Based Epigenome Editing of Cytokine Receptors for the Promotion of Cell Survival and Tissue Deposition in Inflammatory Environments," in a special issue of Tissue Engineering. University of Utah bioengineering doctoral student, Niloofar Farhang, co-authored the study, which is a collaborative project between the University of Utah, Duke University and Washington University in St. Louis.

In chronic back pain, for example, slipped or herniated discs are a result of damaged tissue when inflammation causes cells to create molecules that break down tissue. Typically, inflammation is nature's way of alerting the immune system to repair tissue or tackle infection. But chronic inflammation can instead lead to tissue degeneration and pain.

Bowles' team is using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) system -- new technology of modifying human genetics -- to stop cell death and keep the cells from producing molecules that damage tissue and result in chronic pain. But it doesn't do this by editing or replacing genes, which is what CRISPR tools are typically used for. Instead, it modulates the way genes turn on and off in order to protect cells from inflammation and thus breaking down tissue.

"So they won't respond to inflammation. It disrupts this chronic inflammation pattern that leads to tissue degeneration and pain," Bowles says. "We're not changing what is in your genetic code. We're altering what is expressed. Normally, cells do this themselves, but we are taking engineering control over these cells to tell them what to turn on and turn off."

Now that researchers know they can do this, doctors will be able to modify the genes via an injection directly to the affected area and delay the degeneration of tissue. In the case of back pain, a patient may get a discectomy to remove part of a herniated disc to relieve the pain, but tissue near the spinal cord may continue to breakdown, leading to future pain. This method could stave off additional surgeries by stopping the tissue damage.

"The hope is that this stops degeneration in its tracks, and the patient could avoid any future surgeries," Bowles says. "But it's patient to patient. Some might still need surgery, but it could delay it."

So far, the team has developed a virus that can deliver the gene therapy and has filed a patent on the system. They hope to proceed to human trials after collecting initial data, but Bowles believes it could be about 10 years before this method is used in patients.
-end-
Other researchers on the team include University of Utah orthopaedic surgeon Brandon Lawrence, Duke University biomedical engineering associate professor Charles. A. Gersbach, biomedical engineering professor Farshid Guilak and Distinguished Professor Lori A. Setton of Washington University in St. Louis.

This news release and photos may be downloaded from: unews.utah.edu

University of Utah

Related Gene Therapy Articles:

Mysterious gene transcripts after cancer therapy
Drugs that are used in cancer therapy to erase epigenetic alterations in cancer cells simultaneously promote the production of countless mysterious gene transcripts, scientists from the German Cancer Research Center now report in Nature Genetics.
Gene therapy could 'turn off' severe allergies
A single treatment giving life-long protection from severe allergies such as asthma could be made possible by immunology research at The University of Queensland.
Lipid nanoparticles for gene therapy
Twenty-five years have passed since the publication of the first work on solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as a system for delivering drugs.
New gene therapy for pseudarthrosis trialed at Kazan University
A team headed by Professor Albert Rizvanov, director of the Gene and Cell Technologies Open Lab, created a gene therapy drug that encodes growth factors for the stimulation of blood vessel and bone formation.
WSU researcher develops safer gene therapy
A Washington State University researcher has developed a way to reduce the development of cancer cells that are an infrequent but dangerous byproduct of gene therapy.
New gene therapy prevents muscle wasting associated with cancer
A new gene therapy could be used to prevent the loss of muscle mass and physical strength associated with advanced cancer
On the path to controlled gene therapy
The ability to switch disease-causing genes on and off remains a dream for many physicians, research scientists and patients.
Gene therapy against brain cancer
A team from the International School for Advanced Studies (SISSA) in Trieste has obtained very promising results by applying gene therapy to glioblastoma.
First gene therapy successful against human aging
Elizabeth Parrish, CEO of Bioviva USA Inc. has become the first human being to be successfully rejuvenated by gene therapy, after her own company's experimental therapies reversed 20 years of normal telomere shortening.
Designing gene therapy
Scientists in the Barabas group at EMBL have increased the efficiency of a genome-engineering tool called Sleeping Beauty, which is showing promise in clinical trials for leukemia and lymphoma immunotherapies.

Related Gene Therapy Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".