Atomic map gives malaria drug new lease on life

March 13, 2017

Researchers have for the first time mapped how one of the longest-serving malaria drugs works, opening the possibility of altering its structure to make it more effective and combat increasing malaria drug resistance.

The study produced a precise atomic map of the frontline antimalarial drug mefloquine, showing how its structure could be tweaked to make it more effective in killing malaria parasites.

Dr Wilson Wong and Dr Brad Sleebs led the research at the Walter and Eliza Hall Institute, with Dr Jake Baum at Imperial College London, Dr Sjors Scheres from the Laboratory of Molecular Biology, Cambridge, and Dr Stuart Ralph at Melbourne's Bio21 Institute. The paper was published today in Nature Microbiology.

While drug treatments and preventative medicines for malaria are available, some have serious side effects and drug resistance means there is an urgent need for new treatments.

Many drugs that enter the market are known to kill harmful pathogens, but their exact mechanism for doing so is often unknown.

Dr Wong said it was the first time any team had identified one of the modes of action of mefloquine. "Mefloquine has been in use for more than 40 years, yet we did not understand how it was killing the parasite until now," he said.

The team used cryo-electron microscopy, which produces images of biological molecules in their natural state in unprecedented detail, to see exactly how and where the drug binds the malaria parasite. "We discovered that mefloquine attacks the ribosome - the molecular machinery that manufactures proteins required for malaria parasite survival," Dr Wong said.

Mefloquine has been associated with some serious side effects, including neurological symptoms. While mefloquine's attack on the ribosome is analysed in this study, the authors point out that the drug likely targets other parts of the parasite too, killing it through multiple modes of action.

Dr Wong said the detailed atomic map would enable future drug improvements. "We now know mefloquine binds to a hotspot of activity on the ribosome surface," he said. "However our map of the ribosome and drug-binding site showed the fit is not perfect. We were able to mimic this interaction with compounds that were able to block the protein machinery and kill the parasite more effectively."

Dr Sleebs said using this information to redesign the drug to be more targeted and better differentiate between malaria and human ribosomes would be the next step. "If we could create a drug that targets this particular mode of action, it could be more efficient and potentially more safe for treating malaria."

Dr Jake Baum from Imperial College London said improving the action of existing drugs was a cheaper, quicker way of getting new treatments to patients. "It takes a lot of resources to discover new drugs, but by tweaking the structure of existing drugs we can breathe new life into them, and potentially gain significant benefits with far fewer resources," Dr Baum said. "With growing resistance to frontline antimalarial drugs, it makes sense to improve secondary drugs that work imperfectly, rather than always reinvent the wheel."

Cryo-electron microscopy continues to be a revolutionary technique to investigate the mode of action of new and existing therapies, and could be applied to many other drugs to help improve their design, or design completely new drugs de novo. Seen in this light, drug design with a microscope is likely to become a powerful tool for drug discovery for many of our most deadly pathogens.
-end-
The research was supported by the National Health and Medical Research Council, Victorian Operational Infrastructure Support Scheme, Australian Cancer Research Foundation, Human Science Frontier Program, Medical Research Council, UK, and the Wellcome Trust.

Walter and Eliza Hall Institute

Related Malaria Articles from Brightsurf:

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Breakthrough in malaria research
An international scientific consortium led by the cell biologists Volker Heussler from the University of Bern and Oliver Billker from the UmeƄ University in Sweden has for the first time systematically investigated the genome of the malaria parasite Plasmodium throughout its life cycle in a large-scale experiment.

Scientists close in on malaria vaccine
Scientists have taken another big step forward towards developing a vaccine that's effective against the most severe forms of malaria.

New tool in fight against malaria
Modifying a class of molecules originally developed to treat the skin disease psoriasis could lead to a new malaria drug that is effective against malaria parasites resistant to currently available drugs.

Malaria expert warns of need for malaria drug to treat severe cases in US
The US each year sees more than 1,500 cases of malaria, and currently there is limited access to an intravenously administered (IV) drug needed for the more serious cases.

Monkey malaria breakthrough offers cure for relapsing malaria
A breakthrough in monkey malaria research by two University of Otago scientists could help scientists diagnose and treat a relapsing form of human malaria.

Getting to zero malaria cases in zanzibar
New research led by the Johns Hopkins Center for Communication Programs, Ifakara Health Institute and the Zanzibar Malaria Elimination Program suggests that a better understanding of human behavior at night -- when malaria mosquitoes are biting -- could be key to preventing lingering cases.

Widely used malaria treatment to prevent malaria in pregnant women
A global team of researchers, led by a research team at the Liverpool School of Tropical Medicine (LSTM), are calling for a review of drug-based strategies used to prevent malaria infections in pregnant women, in areas where there is widespread resistance to existing antimalarial medicines.

Protection against Malaria: A matter of balance
A balanced production of pro and anti-inflammatory cytokines at two years of age protects against clinical malaria in early childhood, according to a study led by ISGlobal, an institution supported by ''la Caixa'' Foundation.

The math of malaria
A new mathematical model for malaria shows how competition between parasite strains within a human host reduces the odds of drug resistance developing in a high-transmission setting.

Read More: Malaria News and Malaria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.