Nav: Home

Engineers create most efficient red light-activated optogenetic switch for mammalian cells

March 13, 2018

A team of researchers has developed a light-activated switch that can turn genes on and off in mammalian cells. This is the most efficient so-called "optogenetic switch" activated by red and far-red light that has been successfully designed and tested in animal cells--and it doesn't require the addition of sensing molecules from outside the cells.

The light-activated genetic switch could be used to turn genes on and off in gene therapies; to turn off gene expression in future cancer therapies; and to help track and understand gene function in specific locations in the human body.

The team, led by bioengineers at the University of California San Diego, recently detailed their findings online in ACS Synthetic Biology.

"Being able to control genes deep in the body in a specific location and at a specific time, without adding external elements, is a goal our community has long sought," said Todd Coleman, a professor of bioengineering at the Jacobs School of Engineering at UC San Diego and one of the paper's corresponding authors. "We are controlling genes with the most desirable wavelengths of light."

The researchers' success in building the switch relied on two insights. First, animal cells don't have the machinery to supply electrons to make molecules that would be sensitive to red light. It's the equivalent of having a hair dryer and a power outlet from a foreign country, but no power cord and no power outlet adapter. So researchers led by UC San Diego postdoctoral researcher Phillip Kyriakakis went about building those.

For the power cord, they used bacterial and plant ferredoxin, an iron and sulfur protein that brings about electron transfer in a number of reactions. Ferredoxin exists under a different form in animal cells, which isn't compatible with its plant and bacteria cousin. So an enzyme called Ferredoxin-NADP reductase, or FNR, played the role of outlet adapter.

As a result, the animal cells could now transfer enough electrons from their energy supply to other enzymes that can produce the light-sensitive molecules needed for the light-activated switch.

The second insight was that the system to make light-sensitive molecules needed to be placed in the cell's mitochondria, the cell's energy factory. Combining these two insights, the researchers were able to build a plant system to control genes with red light inside animal cells.

Red light is a safe option to activate genetic switches because it easily passes through the human body. A simple way to demonstrate this is to put your hand over your smart phone's flashlight while it's on. Red light, but not the other colors, will shine through because the body doesn't absorb it. And because it's not absorbed, it can actually pass through tissues harmlessly and reach deep within the body to control genes.

Bioengineers built and programmed a small, compact tabletop device to activate the switch with red and far-red light. The tool allows researchers to control the duration that the light shines, down to the millisecond. It also allows them to target very specific locations. Researchers showed that the genes turned on by the switch remained active for several hours in several mammalian cell lines even after a short light pulse.

The team recently received an internal campus grant to use the method to control gene activation in specific regions of the brain. This would allow them to better understand gene function in a variety of neurological disorders.

The researchers patented the use of ferredoxins and FNR to target the enzymes needed to make light-activated molecules. The technology is available for licensing.

Importantly, insights about how to produce plant molecules in animal cells could also one day enable production of other molecules that can lead to the cultivation of plants that do not need fertilizer and make biofuel production more efficient.
-end-
The study was supported by the Kavli Institute for Brain and Mind at UC San Diego and the Salk Institute, the National Science Foundation, and the National Institutes of Health.

The research team included researchers from the Division of Biological Sciences, the Neurosciences Graduate Program and the School of Medicine at UC San Diego, as well as researchers at Quinnipiac University and the University of Iowa.

Biosynthesis of Orthogonal Molecules Using Ferredoxin and Ferredoxin- NADP+ Reductase Systems Enables Genetically Encoded PhyB Optogenetics

Phillip Kyriakakis, Marianne Catanho, Nicole Hoffner, Walter Thavarajah, Vincent Jian-Yu, Syh-Shiuan Chao, Athena Hsu, Vivian Pham, Ladan Naghavian, Lara E. Dozier, Gentry Patrick, and Todd Coleman

DOI: 10.1021/acssynbio.7b00413

University of California - San Diego

Related Molecules Articles:

The inner lives of molecules
Researchers from Canada, the UK and Germany have developed a new experimental technique to take 3-D images of molecules in action.
Novel technique helps ID elusive molecules
Stuart Lindsay, a researcher at Arizona State University's Biodesign Institute, has devised a clever means of identifying carbohydrate molecules quickly and accurately.
How solvent molecules cooperate in reactions
Molecules from the solvent environment that at first glance seem to be uninvolved can be essential for chemical reactions.
A new way to display the 3-D structure of molecules
Berkeley Lab and UC Berkeley Researchers have developed nanoscale display cases that enables new atomic-scale views of hard-to-study chemical and biological samples.
Bending hot molecules
Hot molecules are found in extreme environments such as the edges of fusion reactors.
At attention, molecules!
University of Iowa chemists have learned about a molecular assembly that may help create quicker, more responsive touch screens, among other applications.
Folding molecules into screw-shaped structures
An international research team describes the methods of winding up molecules into screw-shaped structures.
Artificial molecules
A new method allows scientists at ETH Zurich and IBM to fabricate artificial molecules out of different types of microspheres.
Molecules that may keep you young and alive
A new study may have uncovered the fountain of youth: plant extracts containing the six best groups of anti-aging molecules ever seen.
Fun with Lego (molecules)
A great childhood pleasure is playing with Legos® and marveling at the variety of structures you can create from a small number of basic elements.

Related Molecules Reading:

Molecules: The Elements and the Architecture of Everything
by Theodore Gray (Author), Nick Mann (Photographer)

In this paperback edition of the beloved second book in Theodore Gray's bestselling (1.5 million copies) Elements trilogy, Gray demonstrates how the elements of the periodic table combine into the molecules that form the things that make up our world.

Molecules is the second book in the million-copy bestselling Elements trilogy. In Molecules, Theodore Gray takes the next step in the story that began with the periodic table in his best-selling book, The Elements: A Visual Exploration of Every Known Atom in the Universe (2015) and culminated with the... View Details


Reactions: An Illustrated Exploration of Elements, Molecules, and Change in the Universe
by Theodore Gray (Author)

The long-awaited third installment in Theodore Gray's iconic "Elements" trilogy. The first two titles, Elements and Molecules, have sold more than 1.5 million copies worldwide.

With Reactions bestselling author Theodore Gray continues the journey through our molecular and chemical world that began with the tour de force The Elements and continued with Molecules. In The Elements, Gray gave us a never-before-seen, mesmerizing photographic view of the 118 elements in the periodic table. In Molecules, with the same phenomenal... View Details


We Are All Made of Molecules
by Susin Nielsen (Author)

 *"This savvy, insightful take on the modern family makes for nearly nonstop laughs."—Kirkus Reviews, Starred

Stewart, 13: Socially clueless genius.
Ashley, 14: Popular with everyone but her teachers
 
Ashley's and Stewart's worlds collide when Stewart and his dad move in with Ashley and her mom. The Brady Bunch it isn't. Stewart is trying to be 89.9 percent happy about it--he's always wanted a sister. But Ashley is 110 percent horrified. She already has to hide the real reason her dad moved out; “Spewart” could further threaten her... View Details


Explore Atoms and Molecules!: With 25 Great Projects (Explore Your World)
by Janet Slingerland (Author), Matt Aucoin (Illustrator)

Atoms and molecules are the basic building blocks of matter. Matter is every physical thing around us in the universe, including our own bodies! In Explore Atoms and Molecules! With 25 Great Projects, readers ages 7 to 10 investigate the structure of atoms and learn how atoms fit together to form molecules and materials.

If everything is made out of atoms and molecules, why do people look different from dogs and doorknobs? In Explore Atoms and Molecules, readers discover that the characteristics of a material are determined by the way the atoms and molecules connect,... View Details


Molecules Of Emotion: The Science Behind Mind-Body Medicine
by Candace B. Pert (Author)

Why do we feel the way we feel? How do our thoughts and emotions affect our health? Are our bodies and minds distinct from each other or do they function together as parts of an interconnected system?
In her groundbreaking book Molecules of Emotion, Candace Pert provides startling and decisive answers to these and other challenging questions that scientists and philosophers have pondered for centuries.
Her pioneering research on how the chemicals inside our bodies form a dynamic information network, linking mind and body, is not only provocative, it is revolutionary. By... View Details


Elements: A Visual Exploration of Every Known Atom in the Universe
by Theodore Gray (Author), Nick Mann (Photographer)

The Elements has become an international sensation, with over one million copies in-print worldwide

The highly-anticipated paperback edition of The Elements is finally available.

An eye-opening, original collection of gorgeous, never-before-seen photographic representations of the 118 elements in the periodic table. 

The elements are what we, and everything around us, are made of. But how many elements has anyone actually seen in pure, uncombined form? The Elements provides this rare opportunity. Based on seven years of... View Details


DMT: The Spirit Molecule: A Doctor's Revolutionary Research into the Biology of Near-Death and Mystical Experiences
by Rick Strassman (Author)

A clinical psychiatrist explores the effects of DMT, one of the most powerful psychedelics known.

• A behind-the-scenes look at the cutting edge of psychedelic research.

• Provides a unique scientific explanation for the phenomenon of alien abduction experiences.

From 1990 to 1995 Dr. Rick Strassman conducted U.S. Government-approved and funded clinical research at the University of New Mexico in which he injected sixty volunteers with DMT, one of the most powerful psychedelics known. His detailed account of those sessions is an extraordinarily riveting inquiry... View Details


Napoleon's Buttons: How 17 Molecules Changed History
by Penny Le Couteur (Author), Jay Burreson (Author)

Napoleon's Buttons is the fascinating account of seventeen groups of molecules that have greatly influenced the course of history. These molecules provided the impetus for early exploration, and made possible the voyages of discovery that ensued. The molecules resulted in grand feats of engineering and spurred advances in medicine and law; they determined what we now eat, drink, and wear. A change as small as the position of an atom can lead to enormous alterations in the properties of a substance-which, in turn, can result in great historical shifts.

With lively prose and an... View Details


Molecules in Electromagnetic Fields: From Ultracold Physics to Controlled Chemistry
by Roman V. Krems (Author)

A tutorial for calculating the response of molecules to electric and magnetic fields with examples from research in ultracold physics, controlled chemistry, and molecular collisions in fields

Molecules in Electromagnetic Fields is intended to serve as a tutorial for students beginning research, theoretical or experimental, in an area related to molecular physics. The author—a noted expert in the field—offers a systematic discussion of the effects of static and dynamic electric and magnetic fields on the rotational, fine, and hyperfine structure of molecules. The... View Details


The Billion Dollar Molecule: One Company's Quest for the Perfect Drug
by Barry Werth (Author)

Join journalist Barry Werth as he pulls back the curtain on Vertex, a start-up pharmaceutical company, and witness firsthand the intense drama being played out in the pioneering and hugely profitable field of drug research. Founded by Joshua Boger, a dynamic Harvard- and Merck-trained scientific whiz kid, Vertex is dedicated to designing -- atom by atom -- both a new life-saving immunosuppressant drug, and a drug to combat the virus that causes AIDS.
You will be hooked from start to finish, as you go from the labs, where obsessive, fiercely competitive scientists struggle for a... View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Person You Become
Over the course of our lives, we shed parts of our old selves, embrace new ones, and redefine who we are. This hour, TED speakers explore ideas about the experiences that shape the person we become. Guests include aerobatics pilot and public speaker Janine Shepherd, writers Roxane Gay and Taiye Selasi, activist Jackson Bird, and fashion executive Kaustav Dey.
Now Playing: Science for the People

#478 She Has Her Mother's Laugh
What does heredity really mean? Carl Zimmer would argue it's more than your genes along. In "She Has Her Mother’s Laugh: The Power, Perversions, and Potential of Heredity", Zimmer covers the history of genetics and what kinship and heredity really mean when we're discovering how to alter our own DNA, and, potentially, the DNA of our children.