Nav: Home

Helpful B cells lend a hand to developing neurons

March 13, 2018

Osaka - Neurons are specialized cells of the nervous system that communicate using electrical signals, which propagate down long, wire-like projections called axons. The conduction of these signals requires myelin, a fatty substance that surrounds axons in much the same way that plastic coating surrounds an electrical wire.

Several neurological disorders, including autism and schizophrenia, are thought to be driven in part by the failure of myelin to properly surround axons during development. In a study published in Nature Neuroscience, researchers at Osaka University have added an unexpected piece to the developmental puzzle, showing that immune cells may play a key role in helping myelin to form around newly minted neurons (Fig. 1).

T and B cells are vital players in the immune system; their job is to circulate through the body, find infectious agents, and mount a protective response. These cells spend most of their time traversing the bloodstream and the lymph nodes-but are thought to be blocked from accessing the brain.

"The central nervous system is protected from pathogens by a highly selective barrier that keeps the circulatory system physically separated from the brain," lead author Shogo Tanabe explains. "It's generally believed that this barrier also excludes immune cells from the brain. Our study suggests otherwise, though, as we found that a certain type of B cell is quite abundant in the ventricles, meninges, and choroid plexus in the brains of young mice (Fig. 2). Even more surprising, these cells appear to stimulate axon myelination in the surrounding neurons."

Neurons are unable to produce their own myelin. Instead, supportive cells called oligodendrocytes are responsible for making the myelin sheath that wraps around axons. The team discovered that the B immune cells, called B-1a cells, ensure that enough of these oligodendrocytes are available in the developing brain to support adequate myelination.

"We experimentally depleted B cells from the brains of young mice and saw oligodendrocyte numbers drop significantly, (Fig. 3)" Tanabe adds. "It turns out that so-called natural antibodies secreted by B-1a cells induce oligodendrocyte precurosors to proliferate. These antibodies are typically involved in immune surveillance, but in this case they promote the myelination of axons."

Recent studies have shown that T cells can occupy the meninges and play a role in learning and memory. However, this is the first study implicating B cells in myelin production during early development. The study may have broad implications for diseases driven by early defects in neuronal growth.

"Prior work has indirectly hinted at a role for B cells in neurodevelopmental disorders," lead investigator Toshihide Yamashita notes. "Our findings provide direct evidence that B cells reside in the mouse neonatal brain and promote both oligodendrocyte proliferation and neuron myelination. This suggests to us that B cell dysfunction in early development may contribute to later mental disorders, a possibility that we believe deserves further exploration in future studies."
-end-
Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: http://resou.osaka-u.ac.jp/en/top

Osaka University

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition
by W. W. Norton & Company

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

From Neuron to Brain (5th Ed)
by John G. Nicholls (Author), A. Robert Martin (Author), David A. Brown (Author), Mathew E. Diamond (Author), David A. Weisblat (Author), Paul A. Fuchs (Author)

From Photon to Neuron: Light, Imaging, Vision
by Philip Nelson (Author)

From Neurons to Neighborhoods : The Science of Early Childhood Development
by Committee on Integrating the Science of Early Childhood Development (Author), Youth, and Families Board on Children (Author), National Research Council (Author), Committee on Integrating the Science of Early Childhood Development (Author), Jack P. Shonkoff (Editor), Deborah A. Phillips (Editor)

Neurons & Neurotransmitters Wall Chart: 8271 (Physiology)
by Scientific Publishing (Author)

The 7 Secrets of Neuron Leadership: What Top Military Commanders, Neuroscientists, and the Ancient Greeks Teach Us about Inspiring Teams
by W. Craig Reed (Author), Gordon R. England (Foreword)

Think-A-Lot-Tots: The Neuron: Science Books for Babies, Toddlers, and Kids
by Dr. Thomai Dion (Author)

Spiking Neuron Models: Single Neurons, Populations, Plasticity
by Wulfram Gerstner (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.